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Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier
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Generative Approach

Goal: Construct a discriminant function g(x) = wTx + w0 from the data.

Suppose there are two classes C1 and C2.

Each class is modeled as a Gaussian.

We are going to utilize two concepts:

likelihood function

pX |Y (x |i) = N (x | µi ,Σi )

prior distribution
pY (i) = πi
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Outline

Generative Approaches

Lecture 9 Bayesian Decision Rules
Lecture 10 Evaluating Performance
Lecture 11 Bayesian Parameter Estimation
Lecture 12 Bayesian Prior
Lecture 13 Connecting Bayesian and Linear Regression

Today’s Lecture
Review of High-Dimensional Gaussian

Likelihood and prior
Gaussian PDF

Basic Principle
Making the Bayesian decision
1D Illustration

The Three Cases
Σi = σ2I
Σi = Σ (Next Lecture)
General Σi (Next Lecture)
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High-dimensional Gaussian

An d-dimensional Gaussian has a PDF

pX (x) =
1√

(2π)d |Σ|
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
,

where d denotes the dimensionality of the vector x .

The mean vector µ is

µ = E[X ] =

E[X1]
...

E[Xd ]


The covariance matrix Σ is

Σ = E[(X − µ)(X − µ)T ] =


Var[X1] Cov(X1,X2) . . . Cov(X1,Xd)

Cov(X2,X1) Var[X2] . . . Cov(X2,Xd)
...

...
. . .

...
Cov(Xd ,X1) Cov(XN ,X2) . . . Var[Xd ]


Σ is always positive semi-definite. (Why?)
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Special Case: Diagonal Covariance

Suppose that Xi and Xj are independent for all i 6= j .

This implies Cov(Xi ,Xj) = 0

Simplify Σ

Σ =

σ
2
1 . . . 0
...

. . .
...

0 . . . σ2d

 ,
Then, the exponential is

(x − µ)TΣ−1(x − µ) =
n∑

i=1

(xi − µi )2

σ2i
.

And hence, the PDF is

pX (x) =
n∏

i=1

1√
2πσ2i

exp

{
−(xi − µi )2

2σ2i

}
.
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Visualization

Generate 1000 random samples from a 2D Gaussian

µ =

[
0
0

]
, and Σ =

[
0.25 0.3
0.3 1

]
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Conditional Gaussian

Data {x1, . . . , xN}.
Class Y ∈ {1, 2, . . . ,K}.
Likelihood:

pX |Y (x |k) = Probability of getting X given Y

Prior:
pY (k) = Probability of getting Y

Posterior:

pY |X (k|x) = Probability of getting Y given X

Related by

pY |X (k|x) =
pX |Y (x |k)pY (k)

pX (x)
=

pX |Y (x |k)pY (k)∑
k pX |Y (x |k)pY (k)
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Example

Two Gaussian N (x | µ1,Σ1) and N (x | µ2,Σ2).

Prior probability of getting a class is

pY (1) = π1 and pY (2) = π2.

The likelihood term is

pX |Y (x |k) = N (x | µk ,Σk)

=
1√

(2π)d |Σk |
exp

{
−1

2
(x − µk)TΣ−1

k (x − µk)

}
The posterior is

pY |X (k|x) =
pX |Y (x |k)pY (k)

pX (x)

=

1√
(2π)d |Σk |

exp
{
− 1

2
(x − µk)TΣ−1

k (x − µk)
}
· πk

K∑
k=1

1√
(2π)d |Σk |

exp
{
− 1

2
(x − µk)TΣ−1

k (x − µk)
}
· πk
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Negative Log-Likelihood

Negative Log-Likelihood for Gaussian:

− log pX |Y (x |k)

= − log

(
1√

(2π)d |Σk |
exp

{
−1

2
(x − µk)TΣ−1k (x − µk)

})
=

1

2
(x − µk)TΣ−1k (x − µk)︸ ︷︷ ︸

contains x

−n

2
log 2π − 1

2
log |Σk |︸ ︷︷ ︸

no x

.

(x − µ)TΣ−1(x − µ) ≥ 0, always.√
(x − µ)TΣ−1(x − µ) is called Mahalanobis distance.




