ECE 595: Machine Learning I
 Lecture 9.2: Bayesian Decision - Basic Principle

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University
Purdue

Outline

Generative Approaches

- Lecture 9 Bayesian Decision Rules
- Lecture 10 Evaluating Performance
- Lecture 11 Bayesian Parameter Estimation
- Lecture 12 Bayesian Prior
- Lecture 13 Connecting Bayesian and Linear Regression

Today's Lecture

- Review of High-Dimensional Gaussian
- Likelihood and prior
- Gaussian PDF
- Basic Principle
- Making the Bayesian decision
- 1D Illustration
- The Three Cases
- $\boldsymbol{\Sigma}_{i}=\sigma^{2}$ I
- $\boldsymbol{\Sigma}_{i}=\boldsymbol{\Sigma}$ (Next Lecture)
- General $\boldsymbol{\Sigma}_{i}$ (Next Lecture)

Interaction between Likelihood and Prior

- According to Bayes Theorem, we have that

$$
p_{Y \mid X}(i \mid \boldsymbol{x})=\frac{p_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid i) p_{Y}(i)}{p_{\boldsymbol{X}}(\boldsymbol{x})}
$$

- Posterior: After you have seen \boldsymbol{x}
- Likelihood: Before you see \boldsymbol{x}
- Prior: You subjective believe of class label
- You cannot just use $p_{Y}(i)$; Otherwise you are not using data
- You cannot just use $p_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid i)$; Otherwise you cannot explain " Y given \boldsymbol{X} "

Making the Bayesian Decision

Which class is more likely?

$$
\begin{aligned}
i^{*} & =\underset{i}{\operatorname{argmax}} p_{Y \mid \boldsymbol{X}}(i \mid \boldsymbol{x}) \\
& =\underset{i}{\operatorname{argmax}} \frac{p_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid i) p_{Y}(i)}{p_{\boldsymbol{X}}(\boldsymbol{x})} \\
& =\underset{i}{\operatorname{argmax}} \log p_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid i)+\log \pi_{i}-\log p_{\boldsymbol{X}}(\boldsymbol{x}) \\
& =\underset{i}{\operatorname{argmax}} \log p_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid i)+\log \pi_{i}-\log p_{X}(\boldsymbol{x}) \text { remove }
\end{aligned}
$$

- Solution $=$ the most likely class according to posterior
- This involves a likelihood which depends on the model you choose
- This involves a prior term which is subjective

Let us Plug-in Multi-dimensional Gaussian

Recall d-dimensional Gaussian.

$$
p_{X \mid Y}(\boldsymbol{x} \mid i)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\boldsymbol{\Sigma}_{i}\right|}} \exp \left\{-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)\right\} .
$$

Plug this into the discriminant function

$$
i^{*}=\underset{i}{\operatorname{argmax}} \log p_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid i)+\log \pi_{i}
$$

$$
\begin{aligned}
& =\underset{i}{\operatorname{argmax}}-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right) \\
& =\underset{i}{\operatorname{argmax}} \underbrace{-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)}_{\text {depend on } x} \underbrace{-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{i}\right|+\log \pi_{i}}_{\text {does not depend on } x} .
\end{aligned}
$$

Special Case: 1D; Two classes

The decision rule is

$$
i^{*}=\underset{i}{\operatorname{argmax}} \underbrace{-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)}_{\text {depend on } x} \underbrace{-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{i}\right|+\log \pi_{i}}_{\text {does not depend on } x}
$$

Substitute $\boldsymbol{\Sigma}_{i}=\sigma^{2}$, and $\boldsymbol{\mu}_{i}=\mu_{i}$. Do two classes.

$$
\begin{aligned}
& -\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma^{2}}-\log \sigma+\log \pi_{1} \underset{\mathcal{C}_{2}}{\mathcal{C}_{1}}-\frac{\left(x-\mu_{2}\right)^{2}}{2 \sigma^{2}}-\log \sigma+\log \pi_{2} \\
& -\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma^{2}}-\log \sigma+\log \pi_{1} \underset{\mathcal{C}_{2}}{\gtrless \mathcal{C}_{1}}-\frac{\left(x-\mu_{2}\right)^{2}}{2 \sigma^{2}}-\log \sigma+\log \pi_{2} \\
& x \underset{\text { does not depend on } x}{\gtrless} \underbrace{\mathcal{C}_{1}}_{\mathcal{C}_{2}} \underbrace{\frac{\mu_{1}-\mu_{2}}{2}-\frac{\sigma^{2}}{\mu_{1}-\mu_{2}} \log \frac{\pi_{1}}{\pi_{2}}} .
\end{aligned}
$$

Connecting to Linear Discriminant Function

Recall: A hypothesis function is

$$
h(\boldsymbol{x})= \begin{cases}1, & \text { if } \quad g(\boldsymbol{x})>0 \\ 0, & \text { if } \quad g(\boldsymbol{x})<0 \\ \text { either, } & \text { if } \quad g(\boldsymbol{x})=0\end{cases}
$$

If there are only two classes, then we can define

$$
g(\boldsymbol{x})=g_{i}(\boldsymbol{x})-g_{j}(\boldsymbol{x})
$$

where the i-th discriminant function is

$$
g_{i}(\boldsymbol{x})=\log p_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid i)+\log \pi_{i}
$$

- Class i if $g(\boldsymbol{x})>0 \Longleftrightarrow g_{i}(\boldsymbol{x})>g_{j}(\boldsymbol{x})$
- Class j if $g(\boldsymbol{x})<0 \Longleftrightarrow g_{i}(\boldsymbol{x})<g_{j}(\boldsymbol{x})$
- Either if $g(\boldsymbol{x})=0 \Longleftrightarrow g_{i}(\boldsymbol{x})=g_{j}(\boldsymbol{x})$

