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Outline

Generative Approaches

Lecture 9 Bayesian Decision Rules
Lecture 10 Evaluating Performance
Lecture 11 Bayesian Parameter Estimation
Lecture 12 Bayesian Prior
Lecture 13 Connecting Bayesian and Linear Regression

Today’s Lecture
Review of High-Dimensional Gaussian

Likelihood and prior
Gaussian PDF

Basic Principle
Making the Bayesian decision
1D Illustration

The Three Cases
Σi = σ2I
Σi = Σ (Next Lecture)
General Σi (Next Lecture)
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Interaction between Likelihood and Prior

According to Bayes Theorem, we have that

pY |X (i |x) =
pX |Y (x |i)pY (i)

pX (x)

Posterior: After you have seen x
Likelihood: Before you see x
Prior: You subjective believe of class label

You cannot just use pY (i); Otherwise you are not using data

You cannot just use pX |Y (x |i); Otherwise you cannot explain “Y
given X”
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Making the Bayesian Decision

Which class is more likely?

i∗ = argmax
i

pY |X (i |x)

= argmax
i

pX |Y (x |i)pY (i)

pX (x)

= argmax
i

logpX |Y (x |i) + logπi − logpX (x)

= argmax
i

log pX |Y (x |i) + log πi −���
��: remove

log pX (x)

Solution = the most likely class according to posterior

This involves a likelihood which depends on the model you choose

This involves a prior term which is subjective
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Let us Plug-in Multi-dimensional Gaussian

Recall d-dimensional Gaussian.

pX |Y (x | i) =
1√

(2π)d |Σi |
exp

{
−1

2
(x − µi )

TΣ−1i (x − µi )

}
.

Plug this into the discriminant function

i∗ = argmax
i

log pX |Y (x | i) + log πi

= argmax
i

−1

2
(x − µi )

TΣ−1i (x − µi )−
��
�
��
�*d

2
log(2π)− 1

2
log |Σi |+ log πi

= argmax
i

−1

2
(x − µi )

TΣ−1i (x − µi )︸ ︷︷ ︸
depend on x

−1

2
log |Σi |+ log πi .︸ ︷︷ ︸

does not depend on x
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Special Case: 1D; Two classes

The decision rule is

i∗ = argmax
i

−1

2
(x − µi )

TΣ−1i (x − µi )︸ ︷︷ ︸
depend on x

−1

2
log |Σi |+ log πi .︸ ︷︷ ︸

does not depend on x

Substitute Σi = σ2, and µi = µi . Do two classes.

− (x−µ1)2

2σ2 − log σ + log π1 ≷C1C2 −
(x−µ2)2

2σ2 − log σ + log π2

− (x−µ1)2

2σ2 −��
�*log σ + log π1 ≷C1C2 −

(x−µ2)2

2σ2 −��
�*log σ + log π2

...

x ≷C1C2
µ1 − µ2

2
− σ2

µ1 − µ2
log

π1
π2︸ ︷︷ ︸

does not depend on x

.
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Connecting to Linear Discriminant Function

Recall: A hypothesis function is

h(x) =


1, if g(x) > 0

0, if g(x) < 0

either, if g(x) = 0

If there are only two classes, then we can define

g(x) = gi (x)− gj(x).

where the i-th discriminant function is

gi (x) = log pX |Y (x |i) + log πi .

Class i if g(x) > 0 ⇐⇒ gi (x) > gj(x)

Class j if g(x) < 0 ⇐⇒ gi (x) < gj(x)

Either if g(x) = 0 ⇐⇒ gi (x) = gj(x)




