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Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier
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What is Parameter Estimation?

The goal of parameter estimation is to determine Θ = (µ,Σ) from
dataset

This is the step where you use data
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MLE and MAP

There are two typical ways of estimating parameters.

Maximum-likelihood estimation (MLE): θ is deterministic.

Maximum-a-posteriori estimation (MAP): θ is random and has a prior
distribution.
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Maximum Likelihood Estimation

Given the dataset D = {xn}Nn=1, how to estimate the model parameters?

We are going to use Gaussian as an illustration.

Denote θ as the model parameter.

In Gaussian
θ = {µ,Σ}

The likelihood for one data point xn is

p(xn |
={µ,Σ}︷︸︸︷

θ ) =
1√

(2π)d |Σ|
exp

{
−1

2
(xn − µ)TΣ−1(xn − µ)

}
θ is a deterministic quantity, not a random variable.

θ does not have a distribution.

θ is fixed but unknown.
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Likelihood for the Entire Dataset

Likelihood for the entire dataset {x1, . . . , xN} is

p(D |θ) =
N∏

n=1

{
1√

(2π)d |Σ|
exp

{
−1

2
(xn − µ)TΣ−1(xn − µ)

}}

=

(
1√

(2π)d |Σ|

)N

exp

{
N∑

n=1

− 1

2
(xn − µ)TΣ−1(xn − µ)

}

The Negative Log-Likelihood is

− logp(D |θ) =
N

2
log |Σ|+ N

2
log(2π)d

+
N∑

n=1

{
1

2
(xn − µ)TΣ−1(xn − µ)

}
.
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Maximum Likelihood Estimation

Goal: Find θ that maximizes the likelihood:

θ̂ = argmax
θ

p(D |θ)

= argmax
θ

N∏
n=1

{
1√

(2π)d |Σ|
exp

{
−1

2
(xn − µ)TΣ−1(xn − µ)

}}
= argmin

θ
− log(· · · )

= argmin
θ

N

2
log |Σ|+ N

2
log(2π)d

+
N∑

n=1

{
1

2
(xn − µ)TΣ−1(xn − µ)

}
.

This optimization is called the maximum likelihood estimation
(MLE).
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Illustrating MLE when N = 1. Known σ.

When N = 1: The MLE solution is

µ̂ = argmax
µ

1√
2πσ2

exp

{
−(x1 − µ)2

2σ2

}
= argmin

µ
(x1 − µ)2 = x1.

Which µ will give you the best Gaussian?
When µ = x1, the probability of obtaining x1 is the highest.
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Illustrating MLE when N = 2. Known σ.

When N = 2: The MLE solution is

µ̂ = argmax
µ

(
1√

2πσ2

)2

exp

{
−(x1 − µ)2 + (x2 − µ)2

2σ2

}
= argmin

µ
(x1 − µ)2 + (x2 − µ)2 =

x1 + x2
2

.

Which µ will give you the best Gaussian?
When µ = (x1 + x2)/2, the prob. of obtaining x1 and x2 is highest.
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Illustrating MLE when N = arbitrary integer

The MLE solution is

µ̂ = argmax
µ

(
1√

2πσ2

)2

exp

{
−

N∑
n=1

(xn − µ)2

2σ2

}

= argmin
µ

N∑
n=1

(xn − µ)2 =
1

N

N∑
n=1

xn.

Which µ will give you the best Gaussian?
When µ = 1

N

∑N
n=1 xn, the prob. of obtaining {xn} is highest.
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Estimation in High-dimension

Assume Σ is known and fixed.

Thus, θ = µ. Estimate µ

µ̂ = argmin
µ ��

���N

2
log |Σ|+

��
����N

2
log(2π)d

+
N∑

n=1

{
1

2
(xn − µ)TΣ−1(xn − µ)

}

= argmin
µ

N∑
n=1

{
(xn − µ)TΣ−1(xn − µ)

}
Take derivative, setting to zero:

∇µ

{
N∑

n=1

(xn − µ)TΣ−1(xn − µ)

}
= 2

N∑
n=1

Σ−1(xn − µ) = 0.
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Estimation in High-dimension

Let us do some algebra

N∑
n=1

Σ−1(xn − µ) = 0 =⇒
N∑

n=1

xn =
N∑

n=1

µ

Then we can show that the MLE solution is

µ̂ =
1

N

N∑
n=1

xn.

This is just the empirical average of the entire dataset!

You can show that if E[xn] = µ for all n, then

E[µ̂] =
1

N

N∑
n=1

E[xn] = µ.

We say that µ̂ is a unbiased estimator of µ since E[µ̂] = µ.
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When both µ and Σ are Unknown

What will be the MLE when both µ and Σ are unknown?

(µ̂, Σ̂) = argmin
µ,Σ

N

2
log |Σ|+ N

2
log(2π)d

+
N∑

n=1

{
1

2
(xn − µ)TΣ−1(xn − µ)

}
.︸ ︷︷ ︸

ϕ(µ,Σ)

You need to take derivative with respect to µ and Σ, and solve

∇µϕ(µ,Σ) = 0
∇Σϕ(µ,Σ) = 0

With some (tedious) matrix calculus, we can show that

µ̂ =
1

N

N∑
n=1

xn, and Σ̂ =
1

N

N∑
n=1

(xn − µ)(xn − µ)T .

Exercise: Prove this result when xn is a 1D scalar.




