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Prior for µ

So far we have considered

p(D|µ) =

(
1√

2πσ2

)N

exp

{
−

N∑
n=1

(xn − µ)2

2σ2

}

p(µ) =
1√

2πσ2
0

exp

{
−(µ− µ0)2

2σ2
0

}
.

Unknown µ, and known σ2.

The likelihood is Gaussian (by problem setup).

The prior for µ is Gaussian (by our choice).

Good, because posterior remains a Gaussian.

What happens if σ2 is unknown but µ is known?
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Prior for σ2

Let us define the precision: λ = 1
σ2 .

The likelihood is

p(D|λ) =

(
1√

2πσ2

)N

exp

{
−

N∑
n=1

(xn − µ)2

2σ2

}

=

(
λN/2

(
√

2π)N

)
exp

{
−

N∑
n=1

λ

2
(xn − µ)2

}

=
1

(2π)N/2
λN/2 exp

{
−λ

2

N∑
n=1

(xn − µ)2

}
.

We want to choose p(λ) in a similar form:

p(λ) = AλB exp {−Cλ}

so that the posterior p(λ|D) is easy to compute.
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Prior for σ2

We want to choose p(λ) in a similar form:

p(λ) = AλB exp {−Cλ}
The candidate is ...

p(λ) =
1

Γ(a)
baλa−1 exp(−bλ)

This distribution is called the Gamma distribution Gam(λ|a, b).
We can show that

E[λ] =
a

b
, Var[λ] =

a

b2
.
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Prior for σ2

If we consider this pair of likelihood and prior

p(D|λ) =
1

(2π)N/2
λN/2 exp

{
−λ

2

N∑
n=1

(xn − µ)2

}

p(λ) =
1

Γ(a0)
ba0

0 λ
a0−1 exp(−b0λ),

then the posterior is

p(λ|D) ∝ λ(a0+N/2)−1 exp

{
−

(
b0 +

1

2

N∑
n=1

(xn − µ)2

)
λ

}

Just another Gamma distribution.

You can now do estimation on this Gamma by finding λ which
maximizes the posterior. Details: See Appendix.
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Prior for Both µ and σ2

Again, let λ = 1
σ2 .

The likelihood is

p(D|µ, λ) =

(
1√

2πσ2

)N

exp

{
−

N∑
n=1

(xn − µ)2

2σ2

}

∝
[
λ1/2 exp

{
−λµ

2

2

}]N
exp

{
λµ

N∑
n=1

xn −
λ

2

N∑
n=1

x2
n

}
Candidate for the prior is

p(µ, λ) ∝
[
λ1/2 exp

{
−λµ

2

2

}]β
exp {cλµ− dλ}

= exp

{
−βλ

2
(µ− c/β)2

}
︸ ︷︷ ︸

N (µ|µ0,σ2
0)

λβ/2 exp

{
−
(
d − c2

2β

)
λ

}
︸ ︷︷ ︸

Gam(λ|a,b)

The prior distribution is called the Normal-Gamma distribution.
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Priors for High-dimension Gaussians

Let Λ = Σ−1.

The likelihood is

p(xn|µ,Σ) = N (xm|µ,Λ−1)

Prior for µ: Gaussian.

p(µ) = N (µ|µ0,Λ
−1
0 ).

Prior for Σ: Wishart.

p(Λ) =W(Λ|W , ν).

Prior for both µ and Σ: Normal-Wishart.

p(µ,Λ) = N (µ|µ0, (βΛ)−1)W(Λ|W , ν).
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Conjugate Prior

You have a likelihood pX |Θ(x |θ)

You want to choose a prior pΘ(θ) so that ...

the posterior pΘ|X (θ|x) takes the same form as the prior

Such prior is called the conjugate prior

Conjugate with respect to the likelihood

Finding the conjugate prior may not be easy!

Good news: Any likelihood belong to the exponential family will
have a conjugate prior also in the exponential family.

Exponential family: Gaussian, Exponential, Poisson, Bernoulli, etc

For more discussions, see Bishop Chapter 2.4
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Reading List

Bayesian Parameter Estimation

Duda-Hart-Stork, Pattern Classification, Chapter 3.3 - 3.5

Bishop, Pattern Recognition and Machine Learning, Chapter 2.4

M. Jordan (Berkeley),
https://people.eecs.berkeley.edu/~jordan/courses/

260-spring10/other-readings/chapter9.pdf

CMU Note, http://www.cs.cmu.edu/~aarti/Class/10701_
Spring14/slides/MLE_MAP_Part1.pdf

A. Kak (Purdue), https:
//engineering.purdue.edu/kak/Tutorials/Trinity.pdf
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Appendix
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Prior for σ2: Solution

The posterior is

p(λ|D) ∝ λ(a0+N/2)−1 exp

{
−

(
b0 +

1

2

N∑
n=1

(xn − µ)2

)
λ

}
∝ λaN−1 exp {−bNλ} .

The maximum-a-posteriori estimate of λ is

λ̂ = argmax
λ

p(λ|D)

= argmax
λ

λaN−1 exp {−bNλ}

= argmax
λ

(aN − 1) log λ− bNλ.

Taking derivative and setting to zero:

d

dλ

(
(aN − 1) log λ− bNλ

)
=

aN − 1

λ
− bN = 0.
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Prior for σ2: Solution

Therefore,

λ =
aN − 1

bN
.

where the parameters are

aN = a0 +
N

2
,

bN = b0 +
1

2

N∑
n=1

(xn − µ)2 = b0 +
N

2
σ2
ML.

Hence, the MAP estimate is

λ =
a0 + N

2

b0 + N
2 σ

2
ML

.

As N →∞, λ→ 1
σ2
ML

.

As N → 0, λ→ a0
b0

.
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Prior for Both µ and σ2: Detailed Derivation

Again, let λ = 1
σ2 .

The likelihood is

p(D|µ, λ) =

(
1√

2πσ2

)N

exp

{
−

N∑
n=1

(xn − µ)2

2σ2

}

=

(
λ

2π

)N/2

exp

{
−λ

2

N∑
n=1

(xn − µ)2

}

=

(
λ

2π

)N/2

exp

{
−λ

2

N∑
n=1

(x2
n − 2µxn + µ2)

}

=

(
λ

2π

)N/2

exp

{
−λ

2

N∑
n=1

x2
n + λµ

N∑
n=1

xn

}[
exp

{
−λµ

2

2

}]N

=

(
1

2π

)N/2 [
λ1/2 exp

{
−λµ

2

2

}]N
exp

{
λµ

N∑
n=1

xn −
λ

2

N∑
n=1

x2
n

}

30 / 32



c©Stanley Chan 2020. All Rights Reserved.

Prior for Both µ and σ2: Detailed Derivation

The likelihood is

p(D|µ, λ) ∝
[
λ1/2 exp

{
−λµ

2

2

}]N
exp

{
λµ

N∑
n=1

xn −
λ

2

N∑
n=1

x2
n

}
Candidate for the prior is

p(µ, λ) ∝
[
λ1/2 exp

{
−λµ

2

2

}]β
exp {cλµ− dλ}

=

[
exp

{
−λµ

2

2

}]β [
λβ/2 exp {cλµ− dλ}

]
= exp

{
−βλ

2
(µ− c/β)2

}
︸ ︷︷ ︸

N (µ|µ0,σ2
0)

λβ/2 exp

{
−
(
d − c2

2β

)
λ

}
︸ ︷︷ ︸

Gam(λ|a,b)

µ0 = c/β, σ2
0 = (βλ)−1, a = 1 + β/2, b = d − c2/2β
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Prior for Both µ and σ2: Detailed Derivation

The prior distribution is

p(µ, λ) = N
(
µ|µ0, (βλ)−1

)
Gam(λ|a, b)

This is called the Normal-Gamma distribution

Here is a 2D plot of p(µ, λ) when µ0 = 0, β = 2, a = 5, b = 6.
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