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Outline

1. What is Computational Imaging?

2. My view of phase recovery…

3. Digital holographic “single shot” imaging through deep turbulence
– Leverages advanced signal processing techniques
– Integrates physics and machine learning models
– Is fast and effective



What is Computational Imaging?
(Integrated Imaging)

§ Traditional sensor design is reaching its limits

§ Make the most informative measurement, rather than the 
“purest” measurement.

§ Mick Jagger’s Theorem: You can’t always get what you want, but if you 
try sometimes, you might get what you need.

Novel
Application

Innovative
Sensor

Intelligent
Algorithm



Model Based Iterative Reconstruction (MBIR):
A General Framework for Solving Inverse Problems

Prior Model: 
p(x)

Forward model: f(x)

Physical 
system

Difference

x̂

y

f (x)

x

– Reconstructed object
– Measurements from physical system

x̂
y

x̂← argmax
x

log p(y | x)+ log p(x){ }
forward model prior model



projection
prior manifold

x1

x2

“Thin Manifold” View of Prior Models

reconstruction
p x1 | x2( )

§ But it has thickness

§ Dimension of measurement > dimension of manifold

measurement

§ Notice that prior manifold fills the space but…
•Not a linear manifold

•PCA can not effectively reduce dimension



Phase Recovery for Complex Signals

§ If you can only measure energy, then…

– So you only know that:

⋅ "# $ % $

# $ = % $
∠# $ = ? ?



§Complex signal recovery

Phase Recovery with 
Heterodyne Demodulation

§Heterodyne
⋅ "# $ % $+
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Digital Holography: 
Math versus Experiment

Experiment

Math
⋅ "# $ % $+

'()*+



Digital Holography: Graphical
§Heterodyne

§Complex signal recovery

DC Block! " Filter Pos. 
Freq. X

#$%&'(

) "

⋅ +) " ! "+

#%&'(

Freq. Domain

Space Domain



General Phase Recovery
§Detect magnitude of linear transform ! ∈ ℜ$×&

– Can we recover '?

– Alternating minimization:

Super easy

()*)+, {
.' ← argmin6 7.∗ ):;< − !'

>

?@ ← argmin< 7.∗ ):< − !' >

}

LS inversion

Answer: Mostly “yes” if B ≥ 2E.
Sometimes “yes” when B < 2E.

⋅' 7!
Linear Transform

⋅ >



Example: Phase Recovery with Aliasing
with Dennis Lee and Andy Weiner 

§What if there is aliasing?  (!" too small)

§Then heterodyning doesn’t work, right???

⋅ $% & ' &+

)*+,-

!
!

Answer: Yes, but we can still recover %
using regularized iterative phase recovery!



Example: Phase Recovery with Aliasing*
§ Coherently imaged phase grating with aliasing:

§Regularized iterative reconstruction recovers phase!

*D. J. Lee, C. A. Bouman, and A. M. Weiner, “Single Shot Digital Holography Using Iterative Reconstruction with Alternating 
Updates of Amplitude and Phase,” Computational Imaging Conference 2016
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Phase Recovery!!

Example: Ptychography
with Qiuchen Zhai and Greg Buzzard



Ptychographic Reconstruction

256x256 256x256

Fourier 
Transform

Mag and Phase 
images

Diffraction 
measurements

Reconstruction



! – Complex measurement
" – Complex reflectance coefficient
# – Complex noise
$% – Linear propagation model
% – Unknown phase distortion

! = $%" +#

Laser source

Energy detector Atmospheric 
Turbulence

contains 
speckle

Imaging through Turbulence
with Casey Pellizzari and Mark Spencer

Assumes Fourier 
demodulation



Variables to remember…
! – reflection coefficient

! "– mag2 of reflection coefficient

# – reflectance
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Fig. 3. Raw data collected before SAIL processing.

Fig. 4. SAIL-processed image of the sample shown in
Fig. 2. Vertical direction, the projected range Y ; horizon-
tal direction, the SA processing, or X.

were stored on a computer we carried out standard SA
processing.1

A photograph of the actual target is shown in Fig. 2.
Figure 3 shows the raw data before SA processing,

with 200 3 200 points showing the real part of the
Fourier transform of IH 0 in columns for different X po-
sitions. The frequency varies from 0 to 200 Hz. The
phase information is clearly spread out over the length
of the picture. Figure 4 shows the result of SA pro-
cessing. Because the target was slightly longer than
1 cm in the X direction, two SAIL images, overlapping
by 5 mm, were combined to create the f igure. As part
of SA processing we also compensated for the Gaussian
spatial laser beam profile. In addition to the letters,
SA processing also reveals a number of scratches that
are present on the aluminum plate. As expected from
the coherent detection, the image consists of speck-
les. The X and Y resolution in the image, estimated
from the speckle size, is 90 mm by 170 mm, in reason-
able agreement with the predicted 75 mm by 168 mm
resolution of SA processing.

In summary, we have shown what is to our knowl-
edge the f irst laboratory demonstration of 2-D imaging
with a scan-mode synthetic aperture lidar. Clearly,
there are many challenges that need to be overcome
to move this technique outside the laboratory environ-
ment, but the general feasibility of the synthetic aper-
ture technique for 2-D imaging in the optical domain
is now established.

We thank D. Epp for help with the experimental
apparatus. This research was supported by the U.S.
Office of Naval Research. M. Bashkansky’s e-mail ad-
dress is bashkansky@nrl.navy.mil.
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the fiber had a power of !3 mW. A curved wave
front, as required by SA processing, illuminated the
target. A lens with a focal length of 8 cm reduced
the curvature of the beam at the target while keeping
the size of the beam at !1 cm. This arrangement
permits simulation of longer diffraction distances
with shorter working distances for convenience in
the laboratory. For our experiment this setup simu-
lated an effective aperture of 150 mm at a 1-m range.
The actual target range was 30 cm. The target con-
sisted of the letters NRL cut out from ref lecting tape
and mounted on an aluminum plate at a 45± angle of
incidence in the Y direction (perpendicular to f light
in an airborne system) to permit oblique illumination.
To simulate f light we translated the target in the
X direction in 50-mm increments, using a computer-
controlled translation stage (Transl). This allowed
each target point to sample different parts of the
curved wave front. The laser was scanned in wave-
length over a span of 10 nm at each X position. Light
backscattered from the target was collected by the lens
and returned to the transmitting f iber. The fiber-
optic circulator directed the light that entered the fiber,
along with the LO light, to the InGaAs photodiode
detector (Det). The resultant heterodyne signal was
digitized and stored on a computer for processing. To
acquire a 1 cm 3 1 cm image we performed 200
frequency sweeps, with one sweep per X point. Ac-
quisition of a complete image required a total of 6 min.

SA processing is well understood and described in
detail in relation to SAR1 and SAIL10; therefore, we
merely touch on fundamental principles here. Image
information in the Y direction is obtained by hetero-
dyne detection of the return from a chirped laser. The
range is determined from the beat frequency between
the return signal and a LO. However, to obtain 2-D
information in the present research we stored the am-
plitude and the phase of the heterodyne signal addi-
tionally. We used the amplitude of the beat-frequency
signal to assign brightness to the derived position in
the f inal image. Spatial resolution in the Y direc-
tion is determined by the total frequency spread of the
source and is independent of range. The heterodyne
signal for a linear frequency chirp, IH , is given by

IH ~ ELOES cos
µ
4

Vt
c

DzS 2 2
v0

c
DzS 2 wS

∂
, (1)

where ELO and ES are the LO and the signal f ields,
respectively, v0 is the starting laser frequency, V is
the chirp defined in terms of instantaneous laser fre-
quency v"t# as v"t# ! v0 1 Vt, t is the time, c is the
speed of light, and DzS is the distance between the end
of the fiber and a resolved spot on the sample. Each
resolved spot adds a unique increment wS to the phase
that does not change during the scan as long as the
speckle from the spot does not change. For our sys-
tem a frequency resolution of 1 Hz, corresponding to a
scan time of 1 s, can be shown ideally to provide a range
resolution of !60 mm. However, the actual resolution
is less because the chirp is linear in wavelength, not
in frequency, and because the linearity for the wave-
length scan was specified to only 1%.

The instantaneous heterodyne frequency can be rep-
resented as vH ! "4DzS$l2# "dl$dt#, where l is the
instantaneous wavelength. For DzS ! 30 cm, vH !
5 kHz, and it changes by 65 Hz over the 10-nm wave-
length scan owing to chirp nonlinearity. To overcome
this loss of resolution we used a reference interferome-
ter, as shown in Fig. 1, with DzR % DzS 1 1 cm. When
the signals in the target and the reference interfer-
ometers are multiplied together and passed through a
low-pass filter the following signal is obtained:

IH 0 ~ ELOES cos
µ
4

Vt
c

DzD 2 2
v0

c
DzD 2 wS

∂
, (2)

where an effective range DzD is given by DzD ! DzS 2
DzR . For our system, DzD # 1 cm. The heterodyne
frequency under these conditions is reduced to 166 Hz,
with a corresponding maximum error owing to chirp
nonlinearity of only 2 Hz, which reduces resolution by
a factor of 2. Because the sample is at an !45± angle
of incidence, the resolution in the target plane is de-
creased by further factor of 1.4. The resolution in the
Y direction projected onto the target is thus !168 mm.
Thus, with a 1-cm-diameter beam we can resolve !60
spots.

To prevent random phase f luctuations caused by air
currents during the data collection, we performed the
experiment in an enclosed section on a f loating opti-
cal table. Fluctuations in the wavelength at the start
of the scan also result in the f luctuations in the opti-
cal phase. For SA processing to work, these f luctua-
tions need to be smaller than 2p. This was ensured
by starting the data collection at a precisely repeat-
able wavelength, using very narrow absorption lines of
a HCN cell.

Image information along the X direction is provided
by analysis of the stored phase values for each Y posi-
tion. As the curved wave front of the diffraction lim-
ited laser beam crosses each spot of the target, a unique
phase signature is generated during the heterodyne
detection. Analysis of the phase data yields the X
position from the unique phase signature. The best
theoretical resolution in the X direction is equal to one
half of the diameter of the transmitting aperture and
is range independent1; for our system this corresponds
to 75 mm. Comparable resolution in a direct imag-
ing system would require a receiving aperture with
a diameter twice as large as the illumination spot at
the target. To retrieve the image from the data that

Fig. 2. Target constructed from the letters NRL cut out
from ref lective tape and mounted upon a scratched alu-
minum plate.

! "

#
de-speckled image

November 15, 2002 / Vol. 27, No. 22 / OPTICS LETTERS 1985

Fig. 3. Raw data collected before SAIL processing.

Fig. 4. SAIL-processed image of the sample shown in
Fig. 2. Vertical direction, the projected range Y ; horizon-
tal direction, the SA processing, or X.

were stored on a computer we carried out standard SA
processing.1

A photograph of the actual target is shown in Fig. 2.
Figure 3 shows the raw data before SA processing,

with 200 3 200 points showing the real part of the
Fourier transform of IH 0 in columns for different X po-
sitions. The frequency varies from 0 to 200 Hz. The
phase information is clearly spread out over the length
of the picture. Figure 4 shows the result of SA pro-
cessing. Because the target was slightly longer than
1 cm in the X direction, two SAIL images, overlapping
by 5 mm, were combined to create the f igure. As part
of SA processing we also compensated for the Gaussian
spatial laser beam profile. In addition to the letters,
SA processing also reveals a number of scratches that
are present on the aluminum plate. As expected from
the coherent detection, the image consists of speck-
les. The X and Y resolution in the image, estimated
from the speckle size, is 90 mm by 170 mm, in reason-
able agreement with the predicted 75 mm by 168 mm
resolution of SA processing.

In summary, we have shown what is to our knowl-
edge the f irst laboratory demonstration of 2-D imaging
with a scan-mode synthetic aperture lidar. Clearly,
there are many challenges that need to be overcome
to move this technique outside the laboratory environ-
ment, but the general feasibility of the synthetic aper-
ture technique for 2-D imaging in the optical domain
is now established.

We thank D. Epp for help with the experimental
apparatus. This research was supported by the U.S.
Office of Naval Research. M. Bashkansky’s e-mail ad-
dress is bashkansky@nrl.navy.mil.
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the fiber had a power of !3 mW. A curved wave
front, as required by SA processing, illuminated the
target. A lens with a focal length of 8 cm reduced
the curvature of the beam at the target while keeping
the size of the beam at !1 cm. This arrangement
permits simulation of longer diffraction distances
with shorter working distances for convenience in
the laboratory. For our experiment this setup simu-
lated an effective aperture of 150 mm at a 1-m range.
The actual target range was 30 cm. The target con-
sisted of the letters NRL cut out from ref lecting tape
and mounted on an aluminum plate at a 45± angle of
incidence in the Y direction (perpendicular to f light
in an airborne system) to permit oblique illumination.
To simulate f light we translated the target in the
X direction in 50-mm increments, using a computer-
controlled translation stage (Transl). This allowed
each target point to sample different parts of the
curved wave front. The laser was scanned in wave-
length over a span of 10 nm at each X position. Light
backscattered from the target was collected by the lens
and returned to the transmitting f iber. The fiber-
optic circulator directed the light that entered the fiber,
along with the LO light, to the InGaAs photodiode
detector (Det). The resultant heterodyne signal was
digitized and stored on a computer for processing. To
acquire a 1 cm 3 1 cm image we performed 200
frequency sweeps, with one sweep per X point. Ac-
quisition of a complete image required a total of 6 min.

SA processing is well understood and described in
detail in relation to SAR1 and SAIL10; therefore, we
merely touch on fundamental principles here. Image
information in the Y direction is obtained by hetero-
dyne detection of the return from a chirped laser. The
range is determined from the beat frequency between
the return signal and a LO. However, to obtain 2-D
information in the present research we stored the am-
plitude and the phase of the heterodyne signal addi-
tionally. We used the amplitude of the beat-frequency
signal to assign brightness to the derived position in
the f inal image. Spatial resolution in the Y direc-
tion is determined by the total frequency spread of the
source and is independent of range. The heterodyne
signal for a linear frequency chirp, IH , is given by

IH ~ ELOES cos
µ
4

Vt
c

DzS 2 2
v0

c
DzS 2 wS

∂
, (1)

where ELO and ES are the LO and the signal f ields,
respectively, v0 is the starting laser frequency, V is
the chirp defined in terms of instantaneous laser fre-
quency v"t# as v"t# ! v0 1 Vt, t is the time, c is the
speed of light, and DzS is the distance between the end
of the fiber and a resolved spot on the sample. Each
resolved spot adds a unique increment wS to the phase
that does not change during the scan as long as the
speckle from the spot does not change. For our sys-
tem a frequency resolution of 1 Hz, corresponding to a
scan time of 1 s, can be shown ideally to provide a range
resolution of !60 mm. However, the actual resolution
is less because the chirp is linear in wavelength, not
in frequency, and because the linearity for the wave-
length scan was specified to only 1%.

The instantaneous heterodyne frequency can be rep-
resented as vH ! "4DzS$l2# "dl$dt#, where l is the
instantaneous wavelength. For DzS ! 30 cm, vH !
5 kHz, and it changes by 65 Hz over the 10-nm wave-
length scan owing to chirp nonlinearity. To overcome
this loss of resolution we used a reference interferome-
ter, as shown in Fig. 1, with DzR % DzS 1 1 cm. When
the signals in the target and the reference interfer-
ometers are multiplied together and passed through a
low-pass filter the following signal is obtained:

IH 0 ~ ELOES cos
µ
4

Vt
c

DzD 2 2
v0

c
DzD 2 wS

∂
, (2)

where an effective range DzD is given by DzD ! DzS 2
DzR . For our system, DzD # 1 cm. The heterodyne
frequency under these conditions is reduced to 166 Hz,
with a corresponding maximum error owing to chirp
nonlinearity of only 2 Hz, which reduces resolution by
a factor of 2. Because the sample is at an !45± angle
of incidence, the resolution in the target plane is de-
creased by further factor of 1.4. The resolution in the
Y direction projected onto the target is thus !168 mm.
Thus, with a 1-cm-diameter beam we can resolve !60
spots.

To prevent random phase f luctuations caused by air
currents during the data collection, we performed the
experiment in an enclosed section on a f loating opti-
cal table. Fluctuations in the wavelength at the start
of the scan also result in the f luctuations in the opti-
cal phase. For SA processing to work, these f luctua-
tions need to be smaller than 2p. This was ensured
by starting the data collection at a precisely repeat-
able wavelength, using very narrow absorption lines of
a HCN cell.

Image information along the X direction is provided
by analysis of the stored phase values for each Y posi-
tion. As the curved wave front of the diffraction lim-
ited laser beam crosses each spot of the target, a unique
phase signature is generated during the heterodyne
detection. Analysis of the phase data yields the X
position from the unique phase signature. The best
theoretical resolution in the X direction is equal to one
half of the diameter of the transmitting aperture and
is range independent1; for our system this corresponds
to 75 mm. Comparable resolution in a direct imag-
ing system would require a receiving aperture with
a diameter twice as large as the illumination spot at
the target. To retrieve the image from the data that

Fig. 2. Target constructed from the letters NRL cut out
from ref lective tape and mounted upon a scratched alu-
minum plate.
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Fig. 3. Raw data collected before SAIL processing.

Fig. 4. SAIL-processed image of the sample shown in
Fig. 2. Vertical direction, the projected range Y ; horizon-
tal direction, the SA processing, or X.

were stored on a computer we carried out standard SA
processing.1

A photograph of the actual target is shown in Fig. 2.
Figure 3 shows the raw data before SA processing,

with 200 3 200 points showing the real part of the
Fourier transform of IH 0 in columns for different X po-
sitions. The frequency varies from 0 to 200 Hz. The
phase information is clearly spread out over the length
of the picture. Figure 4 shows the result of SA pro-
cessing. Because the target was slightly longer than
1 cm in the X direction, two SAIL images, overlapping
by 5 mm, were combined to create the f igure. As part
of SA processing we also compensated for the Gaussian
spatial laser beam profile. In addition to the letters,
SA processing also reveals a number of scratches that
are present on the aluminum plate. As expected from
the coherent detection, the image consists of speck-
les. The X and Y resolution in the image, estimated
from the speckle size, is 90 mm by 170 mm, in reason-
able agreement with the predicted 75 mm by 168 mm
resolution of SA processing.

In summary, we have shown what is to our knowl-
edge the f irst laboratory demonstration of 2-D imaging
with a scan-mode synthetic aperture lidar. Clearly,
there are many challenges that need to be overcome
to move this technique outside the laboratory environ-
ment, but the general feasibility of the synthetic aper-
ture technique for 2-D imaging in the optical domain
is now established.

We thank D. Epp for help with the experimental
apparatus. This research was supported by the U.S.
Office of Naval Research. M. Bashkansky’s e-mail ad-
dress is bashkansky@nrl.navy.mil.
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the fiber had a power of !3 mW. A curved wave
front, as required by SA processing, illuminated the
target. A lens with a focal length of 8 cm reduced
the curvature of the beam at the target while keeping
the size of the beam at !1 cm. This arrangement
permits simulation of longer diffraction distances
with shorter working distances for convenience in
the laboratory. For our experiment this setup simu-
lated an effective aperture of 150 mm at a 1-m range.
The actual target range was 30 cm. The target con-
sisted of the letters NRL cut out from ref lecting tape
and mounted on an aluminum plate at a 45± angle of
incidence in the Y direction (perpendicular to f light
in an airborne system) to permit oblique illumination.
To simulate f light we translated the target in the
X direction in 50-mm increments, using a computer-
controlled translation stage (Transl). This allowed
each target point to sample different parts of the
curved wave front. The laser was scanned in wave-
length over a span of 10 nm at each X position. Light
backscattered from the target was collected by the lens
and returned to the transmitting f iber. The fiber-
optic circulator directed the light that entered the fiber,
along with the LO light, to the InGaAs photodiode
detector (Det). The resultant heterodyne signal was
digitized and stored on a computer for processing. To
acquire a 1 cm 3 1 cm image we performed 200
frequency sweeps, with one sweep per X point. Ac-
quisition of a complete image required a total of 6 min.

SA processing is well understood and described in
detail in relation to SAR1 and SAIL10; therefore, we
merely touch on fundamental principles here. Image
information in the Y direction is obtained by hetero-
dyne detection of the return from a chirped laser. The
range is determined from the beat frequency between
the return signal and a LO. However, to obtain 2-D
information in the present research we stored the am-
plitude and the phase of the heterodyne signal addi-
tionally. We used the amplitude of the beat-frequency
signal to assign brightness to the derived position in
the f inal image. Spatial resolution in the Y direc-
tion is determined by the total frequency spread of the
source and is independent of range. The heterodyne
signal for a linear frequency chirp, IH , is given by

IH ~ ELOES cos
µ
4

Vt
c

DzS 2 2
v0

c
DzS 2 wS

∂
, (1)

where ELO and ES are the LO and the signal f ields,
respectively, v0 is the starting laser frequency, V is
the chirp defined in terms of instantaneous laser fre-
quency v"t# as v"t# ! v0 1 Vt, t is the time, c is the
speed of light, and DzS is the distance between the end
of the fiber and a resolved spot on the sample. Each
resolved spot adds a unique increment wS to the phase
that does not change during the scan as long as the
speckle from the spot does not change. For our sys-
tem a frequency resolution of 1 Hz, corresponding to a
scan time of 1 s, can be shown ideally to provide a range
resolution of !60 mm. However, the actual resolution
is less because the chirp is linear in wavelength, not
in frequency, and because the linearity for the wave-
length scan was specified to only 1%.

The instantaneous heterodyne frequency can be rep-
resented as vH ! "4DzS$l2# "dl$dt#, where l is the
instantaneous wavelength. For DzS ! 30 cm, vH !
5 kHz, and it changes by 65 Hz over the 10-nm wave-
length scan owing to chirp nonlinearity. To overcome
this loss of resolution we used a reference interferome-
ter, as shown in Fig. 1, with DzR % DzS 1 1 cm. When
the signals in the target and the reference interfer-
ometers are multiplied together and passed through a
low-pass filter the following signal is obtained:

IH 0 ~ ELOES cos
µ
4

Vt
c

DzD 2 2
v0

c
DzD 2 wS

∂
, (2)

where an effective range DzD is given by DzD ! DzS 2
DzR . For our system, DzD # 1 cm. The heterodyne
frequency under these conditions is reduced to 166 Hz,
with a corresponding maximum error owing to chirp
nonlinearity of only 2 Hz, which reduces resolution by
a factor of 2. Because the sample is at an !45± angle
of incidence, the resolution in the target plane is de-
creased by further factor of 1.4. The resolution in the
Y direction projected onto the target is thus !168 mm.
Thus, with a 1-cm-diameter beam we can resolve !60
spots.

To prevent random phase f luctuations caused by air
currents during the data collection, we performed the
experiment in an enclosed section on a f loating opti-
cal table. Fluctuations in the wavelength at the start
of the scan also result in the f luctuations in the opti-
cal phase. For SA processing to work, these f luctua-
tions need to be smaller than 2p. This was ensured
by starting the data collection at a precisely repeat-
able wavelength, using very narrow absorption lines of
a HCN cell.

Image information along the X direction is provided
by analysis of the stored phase values for each Y posi-
tion. As the curved wave front of the diffraction lim-
ited laser beam crosses each spot of the target, a unique
phase signature is generated during the heterodyne
detection. Analysis of the phase data yields the X
position from the unique phase signature. The best
theoretical resolution in the X direction is equal to one
half of the diameter of the transmitting aperture and
is range independent1; for our system this corresponds
to 75 mm. Comparable resolution in a direct imag-
ing system would require a receiving aperture with
a diameter twice as large as the illumination spot at
the target. To retrieve the image from the data that

Fig. 2. Target constructed from the letters NRL cut out
from ref lective tape and mounted upon a scratched alu-
minum plate.
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Fig. 3. Raw data collected before SAIL processing.

Fig. 4. SAIL-processed image of the sample shown in
Fig. 2. Vertical direction, the projected range Y ; horizon-
tal direction, the SA processing, or X.

were stored on a computer we carried out standard SA
processing.1

A photograph of the actual target is shown in Fig. 2.
Figure 3 shows the raw data before SA processing,

with 200 3 200 points showing the real part of the
Fourier transform of IH 0 in columns for different X po-
sitions. The frequency varies from 0 to 200 Hz. The
phase information is clearly spread out over the length
of the picture. Figure 4 shows the result of SA pro-
cessing. Because the target was slightly longer than
1 cm in the X direction, two SAIL images, overlapping
by 5 mm, were combined to create the f igure. As part
of SA processing we also compensated for the Gaussian
spatial laser beam profile. In addition to the letters,
SA processing also reveals a number of scratches that
are present on the aluminum plate. As expected from
the coherent detection, the image consists of speck-
les. The X and Y resolution in the image, estimated
from the speckle size, is 90 mm by 170 mm, in reason-
able agreement with the predicted 75 mm by 168 mm
resolution of SA processing.

In summary, we have shown what is to our knowl-
edge the f irst laboratory demonstration of 2-D imaging
with a scan-mode synthetic aperture lidar. Clearly,
there are many challenges that need to be overcome
to move this technique outside the laboratory environ-
ment, but the general feasibility of the synthetic aper-
ture technique for 2-D imaging in the optical domain
is now established.
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the fiber had a power of !3 mW. A curved wave
front, as required by SA processing, illuminated the
target. A lens with a focal length of 8 cm reduced
the curvature of the beam at the target while keeping
the size of the beam at !1 cm. This arrangement
permits simulation of longer diffraction distances
with shorter working distances for convenience in
the laboratory. For our experiment this setup simu-
lated an effective aperture of 150 mm at a 1-m range.
The actual target range was 30 cm. The target con-
sisted of the letters NRL cut out from ref lecting tape
and mounted on an aluminum plate at a 45± angle of
incidence in the Y direction (perpendicular to f light
in an airborne system) to permit oblique illumination.
To simulate f light we translated the target in the
X direction in 50-mm increments, using a computer-
controlled translation stage (Transl). This allowed
each target point to sample different parts of the
curved wave front. The laser was scanned in wave-
length over a span of 10 nm at each X position. Light
backscattered from the target was collected by the lens
and returned to the transmitting f iber. The fiber-
optic circulator directed the light that entered the fiber,
along with the LO light, to the InGaAs photodiode
detector (Det). The resultant heterodyne signal was
digitized and stored on a computer for processing. To
acquire a 1 cm 3 1 cm image we performed 200
frequency sweeps, with one sweep per X point. Ac-
quisition of a complete image required a total of 6 min.

SA processing is well understood and described in
detail in relation to SAR1 and SAIL10; therefore, we
merely touch on fundamental principles here. Image
information in the Y direction is obtained by hetero-
dyne detection of the return from a chirped laser. The
range is determined from the beat frequency between
the return signal and a LO. However, to obtain 2-D
information in the present research we stored the am-
plitude and the phase of the heterodyne signal addi-
tionally. We used the amplitude of the beat-frequency
signal to assign brightness to the derived position in
the f inal image. Spatial resolution in the Y direc-
tion is determined by the total frequency spread of the
source and is independent of range. The heterodyne
signal for a linear frequency chirp, IH , is given by

IH ~ ELOES cos
µ
4

Vt
c

DzS 2 2
v0

c
DzS 2 wS

∂
, (1)

where ELO and ES are the LO and the signal f ields,
respectively, v0 is the starting laser frequency, V is
the chirp defined in terms of instantaneous laser fre-
quency v"t# as v"t# ! v0 1 Vt, t is the time, c is the
speed of light, and DzS is the distance between the end
of the fiber and a resolved spot on the sample. Each
resolved spot adds a unique increment wS to the phase
that does not change during the scan as long as the
speckle from the spot does not change. For our sys-
tem a frequency resolution of 1 Hz, corresponding to a
scan time of 1 s, can be shown ideally to provide a range
resolution of !60 mm. However, the actual resolution
is less because the chirp is linear in wavelength, not
in frequency, and because the linearity for the wave-
length scan was specified to only 1%.

The instantaneous heterodyne frequency can be rep-
resented as vH ! "4DzS$l2# "dl$dt#, where l is the
instantaneous wavelength. For DzS ! 30 cm, vH !
5 kHz, and it changes by 65 Hz over the 10-nm wave-
length scan owing to chirp nonlinearity. To overcome
this loss of resolution we used a reference interferome-
ter, as shown in Fig. 1, with DzR % DzS 1 1 cm. When
the signals in the target and the reference interfer-
ometers are multiplied together and passed through a
low-pass filter the following signal is obtained:

IH 0 ~ ELOES cos
µ
4

Vt
c

DzD 2 2
v0

c
DzD 2 wS

∂
, (2)

where an effective range DzD is given by DzD ! DzS 2
DzR . For our system, DzD # 1 cm. The heterodyne
frequency under these conditions is reduced to 166 Hz,
with a corresponding maximum error owing to chirp
nonlinearity of only 2 Hz, which reduces resolution by
a factor of 2. Because the sample is at an !45± angle
of incidence, the resolution in the target plane is de-
creased by further factor of 1.4. The resolution in the
Y direction projected onto the target is thus !168 mm.
Thus, with a 1-cm-diameter beam we can resolve !60
spots.

To prevent random phase f luctuations caused by air
currents during the data collection, we performed the
experiment in an enclosed section on a f loating opti-
cal table. Fluctuations in the wavelength at the start
of the scan also result in the f luctuations in the opti-
cal phase. For SA processing to work, these f luctua-
tions need to be smaller than 2p. This was ensured
by starting the data collection at a precisely repeat-
able wavelength, using very narrow absorption lines of
a HCN cell.

Image information along the X direction is provided
by analysis of the stored phase values for each Y posi-
tion. As the curved wave front of the diffraction lim-
ited laser beam crosses each spot of the target, a unique
phase signature is generated during the heterodyne
detection. Analysis of the phase data yields the X
position from the unique phase signature. The best
theoretical resolution in the X direction is equal to one
half of the diameter of the transmitting aperture and
is range independent1; for our system this corresponds
to 75 mm. Comparable resolution in a direct imag-
ing system would require a receiving aperture with
a diameter twice as large as the illumination spot at
the target. To retrieve the image from the data that

Fig. 2. Target constructed from the letters NRL cut out
from ref lective tape and mounted upon a scratched alu-
minum plate.
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DH-MBIR: Strehl Ratio vs SNR (Simulated)
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Fig. 6. Atmospheric phase errors for Dap/r0 values of (a) 10,
(b) 20, (c) 30, and (d) 40. Values shown are wrapped to [�p, p)

r0, also known as the Fried parameter [24, 25]. The value of r0
specifies the degree to which the phase of a plane-wave passing
through the turbulent medium is correlated. Two points in the
phase function which are separated by a distance greater than
r0 will typically be loosely correlated. In this paper, we report
turbulence strength using the ratio Dap/r0 which is related to
the degrees of freedom in the atmospheric phase. We simulated
data for Dap/r0 values of 10, 20, 30, and 40. Figure 6 shows
examples of the wrapped phase errors for each case.

After we added phase errors to the propagated field and
applied the aperture function shown in Fig. 5, we mixed the
signal with a modulated reference beam and detected the re-
sultant power. Following [3], the reference-beam power was
approximately 80% of the 5 ⇥ 104

photoelectron (pe) well depth
of the detector. We modeled Gaussian read noise with a stan-
dard deviation of 40 pe and digitized the output to 12 bits. After
detection, we demodulated the signal to remove the spatial-
frequency offset from the reference beam, low-pass filtered to
isolate the signal of interest, and decimated to obtain a 256⇥ 256
data array.1 The resulting data was represented by Eq. (2) after
vectorization.

We generated data over a range of SNRs which we define as

SNR =
s

2(A f )

s2(w)
, (29)

where s
2(·) is the sample-variance operator used in Eq. (28). For

optically-coherent systems, SNR is well approximated by the
average number of detected signal photons per pixel [17, 26]. At
each turbulence strength, and at each SNR, we generated 18 i.i.d.
realizations of the data. We then processed each i.i.d. realization
independently and computed the average performance over the
18 independent cases.

To measure the distortion between the reconstructed images,
r̂, and the simulation input, r, we used normalized root mean
square error (NRMSE) given by

NRMSE =

s
||a⇤ r̂ � r||2

||r||2 , (30)

1It is typical for this process to be carried out by taking an FFT, windowing a
small region around the desired signal spectrum, and taking an inverse FFT.

where
a⇤ = argmin

a

n
||ar̂ � r||2

o
, (31)

is the least-squares fit for any multiplicative offset between r

and r̂.
To measure distortion between the reconstructed phase error,

f̂, and the actual phase error, f, we calculated the Strehl ratio
according to

S =

h
|FFT

n
a(m, n)ej[f̂(m,n)�f(m,n)]

o
|2
i

max
[|FFT {a(m, n)} |2]max

, (32)

where FFT {·} is the FFT operator and [·]max indicates that we
take the maximum value of the argument. The function a(m, n)
is a binary function that represents the aperture in the observa-
tion plane. It takes on the value 1 inside the white dotted circle
shown in Fig. 5 and 0 outside.

We compared performance of the proposed algorithm to the
IS approach presented in [3]. The algorithm computes the phase-
error estimate according to

f̂ = Zĉ, (33)

where Z 2 RM⇥Np is a matrix with columns corresponding to
the first Np Zernike polynomials, and ĉ 2 RNp is an estimate of
the polynomial coefficients. We found the coefficients by max-
imizing a sharpness metric of the FFT-based image according
to

ĉ = argmax
c

(
�Â

p,q

⇣
|DHD(exp {jZc})H

y|�2
⌘�0.5

)
, (34)

where � indicates the application of an exponent to each ele-
ment. Equations (33) and (34) correspond to the the 15th order
polynomial estimate using the M2 sharpness metric in [3]. M2
performed the best for a single speckle realization, and the 15th

order polynomial estimate was robust to oversharpening.
Following [3], we used an iterative method to estimate the

3rd order terms, then the 4th, and so on, continuing up to 15th

order (133 terms). We initialized the algorithm by setting the
coefficients to zero, then we used a conjugate-gradient algorithm
for optimization.

For the proposed MBIR algorithm we allowed the outer ini-
tialization loop to run NL = 2 ⇥ 102 times, with NK = 10 EM
iterations each time. We kept NL constant for all reconstructions.
Once the iterative initialization process was complete, we set
a stopping criteria of eT = 1 ⇥ 10�4 and let the EM algorithm
run to completion. We used q = 2, p = 1.1, T = 0.1, g = 2,
and b = G(0.1) as the QGGMRF prior parameters for image
reconstruction. Additionally, we used nb = 2, sf̄ = 0.1 and
b = G(0.1) for the phase error prior parameters. Using nb = 2
gives a total number of unknowns of 5/4N.

6. EXPERIMENTAL RESULTS

Figure 7 shows example reconstructions for a subset of the re-
sults. Each block of images shows the reconstructions corre-
sponding to the median Strehl ratio of the 18 i.i.d. data sets.
Note that we only show five of the 20 SNR levels for each tur-
bulence strength. The top row of each image block shows the
original blurry images, the middle shows the IS reconstructions,
and the bottom shows the MBIR reconstruction. The residual
phase errors, wrapped to [�p, p), are shown below each image
block. To aid in viewing the higher-order residual phase errors

Research Article Journal of the Optical Society of America A 6

200 400 600 800 1000

(a)

200

400

600

800

1000

-2

0

2

[rad] 200 400 600 800 1000

(b)

200

400

600

800

1000

-2

0

2

[rad]

200 400 600 800 1000

(c)

200

400

600

800

1000

-2

0

2

[rad] 200 400 600 800 1000

(d)

200

400

600

800

1000

-2

0

2

[rad]

Fig. 6. Atmospheric phase errors for Dap/r0 values of (a) 10,
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r0, also known as the Fried parameter [24, 25]. The value of r0
specifies the degree to which the phase of a plane-wave passing
through the turbulent medium is correlated. Two points in the
phase function which are separated by a distance greater than
r0 will typically be loosely correlated. In this paper, we report
turbulence strength using the ratio Dap/r0 which is related to
the degrees of freedom in the atmospheric phase. We simulated
data for Dap/r0 values of 10, 20, 30, and 40. Figure 6 shows
examples of the wrapped phase errors for each case.

After we added phase errors to the propagated field and
applied the aperture function shown in Fig. 5, we mixed the
signal with a modulated reference beam and detected the re-
sultant power. Following [3], the reference-beam power was
approximately 80% of the 5 ⇥ 104

photoelectron (pe) well depth
of the detector. We modeled Gaussian read noise with a stan-
dard deviation of 40 pe and digitized the output to 12 bits. After
detection, we demodulated the signal to remove the spatial-
frequency offset from the reference beam, low-pass filtered to
isolate the signal of interest, and decimated to obtain a 256⇥ 256
data array.1 The resulting data was represented by Eq. (2) after
vectorization.

We generated data over a range of SNRs which we define as

SNR =
s

2(A f )

s2(w)
, (29)

where s
2(·) is the sample-variance operator used in Eq. (28). For

optically-coherent systems, SNR is well approximated by the
average number of detected signal photons per pixel [17, 26]. At
each turbulence strength, and at each SNR, we generated 18 i.i.d.
realizations of the data. We then processed each i.i.d. realization
independently and computed the average performance over the
18 independent cases.

To measure the distortion between the reconstructed images,
r̂, and the simulation input, r, we used normalized root mean
square error (NRMSE) given by

NRMSE =

s
||a⇤ r̂ � r||2

||r||2 , (30)

1It is typical for this process to be carried out by taking an FFT, windowing a
small region around the desired signal spectrum, and taking an inverse FFT.

where
a⇤ = argmin

a

n
||ar̂ � r||2

o
, (31)

is the least-squares fit for any multiplicative offset between r

and r̂.
To measure distortion between the reconstructed phase error,

f̂, and the actual phase error, f, we calculated the Strehl ratio
according to

S =

h
|FFT

n
a(m, n)ej[f̂(m,n)�f(m,n)]

o
|2
i

max
[|FFT {a(m, n)} |2]max

, (32)

where FFT {·} is the FFT operator and [·]max indicates that we
take the maximum value of the argument. The function a(m, n)
is a binary function that represents the aperture in the observa-
tion plane. It takes on the value 1 inside the white dotted circle
shown in Fig. 5 and 0 outside.

We compared performance of the proposed algorithm to the
IS approach presented in [3]. The algorithm computes the phase-
error estimate according to

f̂ = Zĉ, (33)

where Z 2 RM⇥Np is a matrix with columns corresponding to
the first Np Zernike polynomials, and ĉ 2 RNp is an estimate of
the polynomial coefficients. We found the coefficients by max-
imizing a sharpness metric of the FFT-based image according
to

ĉ = argmax
c

(
�Â

p,q

⇣
|DHD(exp {jZc})H

y|�2
⌘�0.5

)
, (34)

where � indicates the application of an exponent to each ele-
ment. Equations (33) and (34) correspond to the the 15th order
polynomial estimate using the M2 sharpness metric in [3]. M2
performed the best for a single speckle realization, and the 15th

order polynomial estimate was robust to oversharpening.
Following [3], we used an iterative method to estimate the

3rd order terms, then the 4th, and so on, continuing up to 15th

order (133 terms). We initialized the algorithm by setting the
coefficients to zero, then we used a conjugate-gradient algorithm
for optimization.

For the proposed MBIR algorithm we allowed the outer ini-
tialization loop to run NL = 2 ⇥ 102 times, with NK = 10 EM
iterations each time. We kept NL constant for all reconstructions.
Once the iterative initialization process was complete, we set
a stopping criteria of eT = 1 ⇥ 10�4 and let the EM algorithm
run to completion. We used q = 2, p = 1.1, T = 0.1, g = 2,
and b = G(0.1) as the QGGMRF prior parameters for image
reconstruction. Additionally, we used nb = 2, sf̄ = 0.1 and
b = G(0.1) for the phase error prior parameters. Using nb = 2
gives a total number of unknowns of 5/4N.

6. EXPERIMENTAL RESULTS

Figure 7 shows example reconstructions for a subset of the re-
sults. Each block of images shows the reconstructions corre-
sponding to the median Strehl ratio of the 18 i.i.d. data sets.
Note that we only show five of the 20 SNR levels for each tur-
bulence strength. The top row of each image block shows the
original blurry images, the middle shows the IS reconstructions,
and the bottom shows the MBIR reconstruction. The residual
phase errors, wrapped to [�p, p), are shown below each image
block. To aid in viewing the higher-order residual phase errors
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(b) 20, (c) 30, and (d) 40. Values shown are wrapped to [�p, p)

r0, also known as the Fried parameter [24, 25]. The value of r0
specifies the degree to which the phase of a plane-wave passing
through the turbulent medium is correlated. Two points in the
phase function which are separated by a distance greater than
r0 will typically be loosely correlated. In this paper, we report
turbulence strength using the ratio Dap/r0 which is related to
the degrees of freedom in the atmospheric phase. We simulated
data for Dap/r0 values of 10, 20, 30, and 40. Figure 6 shows
examples of the wrapped phase errors for each case.

After we added phase errors to the propagated field and
applied the aperture function shown in Fig. 5, we mixed the
signal with a modulated reference beam and detected the re-
sultant power. Following [3], the reference-beam power was
approximately 80% of the 5 ⇥ 104

photoelectron (pe) well depth
of the detector. We modeled Gaussian read noise with a stan-
dard deviation of 40 pe and digitized the output to 12 bits. After
detection, we demodulated the signal to remove the spatial-
frequency offset from the reference beam, low-pass filtered to
isolate the signal of interest, and decimated to obtain a 256⇥ 256
data array.1 The resulting data was represented by Eq. (2) after
vectorization.

We generated data over a range of SNRs which we define as

SNR =
s

2(A f )

s2(w)
, (29)

where s
2(·) is the sample-variance operator used in Eq. (28). For

optically-coherent systems, SNR is well approximated by the
average number of detected signal photons per pixel [17, 26]. At
each turbulence strength, and at each SNR, we generated 18 i.i.d.
realizations of the data. We then processed each i.i.d. realization
independently and computed the average performance over the
18 independent cases.

To measure the distortion between the reconstructed images,
r̂, and the simulation input, r, we used normalized root mean
square error (NRMSE) given by

NRMSE =

s
||a⇤ r̂ � r||2

||r||2 , (30)

1It is typical for this process to be carried out by taking an FFT, windowing a
small region around the desired signal spectrum, and taking an inverse FFT.

where
a⇤ = argmin

a

n
||ar̂ � r||2

o
, (31)

is the least-squares fit for any multiplicative offset between r

and r̂.
To measure distortion between the reconstructed phase error,

f̂, and the actual phase error, f, we calculated the Strehl ratio
according to

S =

h
|FFT

n
a(m, n)ej[f̂(m,n)�f(m,n)]

o
|2
i

max
[|FFT {a(m, n)} |2]max

, (32)

where FFT {·} is the FFT operator and [·]max indicates that we
take the maximum value of the argument. The function a(m, n)
is a binary function that represents the aperture in the observa-
tion plane. It takes on the value 1 inside the white dotted circle
shown in Fig. 5 and 0 outside.

We compared performance of the proposed algorithm to the
IS approach presented in [3]. The algorithm computes the phase-
error estimate according to

f̂ = Zĉ, (33)

where Z 2 RM⇥Np is a matrix with columns corresponding to
the first Np Zernike polynomials, and ĉ 2 RNp is an estimate of
the polynomial coefficients. We found the coefficients by max-
imizing a sharpness metric of the FFT-based image according
to

ĉ = argmax
c

(
�Â

p,q

⇣
|DHD(exp {jZc})H

y|�2
⌘�0.5

)
, (34)

where � indicates the application of an exponent to each ele-
ment. Equations (33) and (34) correspond to the the 15th order
polynomial estimate using the M2 sharpness metric in [3]. M2
performed the best for a single speckle realization, and the 15th

order polynomial estimate was robust to oversharpening.
Following [3], we used an iterative method to estimate the

3rd order terms, then the 4th, and so on, continuing up to 15th

order (133 terms). We initialized the algorithm by setting the
coefficients to zero, then we used a conjugate-gradient algorithm
for optimization.

For the proposed MBIR algorithm we allowed the outer ini-
tialization loop to run NL = 2 ⇥ 102 times, with NK = 10 EM
iterations each time. We kept NL constant for all reconstructions.
Once the iterative initialization process was complete, we set
a stopping criteria of eT = 1 ⇥ 10�4 and let the EM algorithm
run to completion. We used q = 2, p = 1.1, T = 0.1, g = 2,
and b = G(0.1) as the QGGMRF prior parameters for image
reconstruction. Additionally, we used nb = 2, sf̄ = 0.1 and
b = G(0.1) for the phase error prior parameters. Using nb = 2
gives a total number of unknowns of 5/4N.

6. EXPERIMENTAL RESULTS

Figure 7 shows example reconstructions for a subset of the re-
sults. Each block of images shows the reconstructions corre-
sponding to the median Strehl ratio of the 18 i.i.d. data sets.
Note that we only show five of the 20 SNR levels for each tur-
bulence strength. The top row of each image block shows the
original blurry images, the middle shows the IS reconstructions,
and the bottom shows the MBIR reconstruction. The residual
phase errors, wrapped to [�p, p), are shown below each image
block. To aid in viewing the higher-order residual phase errors
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r0, also known as the Fried parameter [24, 25]. The value of r0
specifies the degree to which the phase of a plane-wave passing
through the turbulent medium is correlated. Two points in the
phase function which are separated by a distance greater than
r0 will typically be loosely correlated. In this paper, we report
turbulence strength using the ratio Dap/r0 which is related to
the degrees of freedom in the atmospheric phase. We simulated
data for Dap/r0 values of 10, 20, 30, and 40. Figure 6 shows
examples of the wrapped phase errors for each case.

After we added phase errors to the propagated field and
applied the aperture function shown in Fig. 5, we mixed the
signal with a modulated reference beam and detected the re-
sultant power. Following [3], the reference-beam power was
approximately 80% of the 5 ⇥ 104

photoelectron (pe) well depth
of the detector. We modeled Gaussian read noise with a stan-
dard deviation of 40 pe and digitized the output to 12 bits. After
detection, we demodulated the signal to remove the spatial-
frequency offset from the reference beam, low-pass filtered to
isolate the signal of interest, and decimated to obtain a 256⇥ 256
data array.1 The resulting data was represented by Eq. (2) after
vectorization.

We generated data over a range of SNRs which we define as

SNR =
s

2(A f )

s2(w)
, (29)

where s
2(·) is the sample-variance operator used in Eq. (28). For

optically-coherent systems, SNR is well approximated by the
average number of detected signal photons per pixel [17, 26]. At
each turbulence strength, and at each SNR, we generated 18 i.i.d.
realizations of the data. We then processed each i.i.d. realization
independently and computed the average performance over the
18 independent cases.

To measure the distortion between the reconstructed images,
r̂, and the simulation input, r, we used normalized root mean
square error (NRMSE) given by

NRMSE =

s
||a⇤ r̂ � r||2

||r||2 , (30)

1It is typical for this process to be carried out by taking an FFT, windowing a
small region around the desired signal spectrum, and taking an inverse FFT.

where
a⇤ = argmin

a

n
||ar̂ � r||2

o
, (31)

is the least-squares fit for any multiplicative offset between r

and r̂.
To measure distortion between the reconstructed phase error,

f̂, and the actual phase error, f, we calculated the Strehl ratio
according to

S =

h
|FFT
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a(m, n)ej[f̂(m,n)�f(m,n)]

o
|2
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max
[|FFT {a(m, n)} |2]max

, (32)

where FFT {·} is the FFT operator and [·]max indicates that we
take the maximum value of the argument. The function a(m, n)
is a binary function that represents the aperture in the observa-
tion plane. It takes on the value 1 inside the white dotted circle
shown in Fig. 5 and 0 outside.

We compared performance of the proposed algorithm to the
IS approach presented in [3]. The algorithm computes the phase-
error estimate according to

f̂ = Zĉ, (33)

where Z 2 RM⇥Np is a matrix with columns corresponding to
the first Np Zernike polynomials, and ĉ 2 RNp is an estimate of
the polynomial coefficients. We found the coefficients by max-
imizing a sharpness metric of the FFT-based image according
to

ĉ = argmax
c

(
�Â

p,q
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|DHD(exp {jZc})H
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⌘�0.5

)
, (34)

where � indicates the application of an exponent to each ele-
ment. Equations (33) and (34) correspond to the the 15th order
polynomial estimate using the M2 sharpness metric in [3]. M2
performed the best for a single speckle realization, and the 15th

order polynomial estimate was robust to oversharpening.
Following [3], we used an iterative method to estimate the

3rd order terms, then the 4th, and so on, continuing up to 15th

order (133 terms). We initialized the algorithm by setting the
coefficients to zero, then we used a conjugate-gradient algorithm
for optimization.

For the proposed MBIR algorithm we allowed the outer ini-
tialization loop to run NL = 2 ⇥ 102 times, with NK = 10 EM
iterations each time. We kept NL constant for all reconstructions.
Once the iterative initialization process was complete, we set
a stopping criteria of eT = 1 ⇥ 10�4 and let the EM algorithm
run to completion. We used q = 2, p = 1.1, T = 0.1, g = 2,
and b = G(0.1) as the QGGMRF prior parameters for image
reconstruction. Additionally, we used nb = 2, sf̄ = 0.1 and
b = G(0.1) for the phase error prior parameters. Using nb = 2
gives a total number of unknowns of 5/4N.

6. EXPERIMENTAL RESULTS

Figure 7 shows example reconstructions for a subset of the re-
sults. Each block of images shows the reconstructions corre-
sponding to the median Strehl ratio of the 18 i.i.d. data sets.
Note that we only show five of the 20 SNR levels for each tur-
bulence strength. The top row of each image block shows the
original blurry images, the middle shows the IS reconstructions,
and the bottom shows the MBIR reconstruction. The residual
phase errors, wrapped to [�p, p), are shown below each image
block. To aid in viewing the higher-order residual phase errors



Anisoplanatic Experiments
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DH-MBIR: Anisoplanatic Results (Simulated)

Simulation 
Parameters:
• 256x256 images
• 3 phase screens
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Plug and Play/Consensus 
Equilibrium Approach

§ PnP/CE is a framework for integrating models:
– Physics based model of DH sensor
– Machine learning model of images and phase errors

§ Approach:
– Build an “agent” for forward model and prior model
– Forward model uses EM algorithm
– Prior model is a convolutional neural network (CNN) 

denoiser



PnP Reconstruction (Simulation Data)

Pn
P

“It’s the power of the deep neural network…,” 
― Dong Hye Ye



Takeaways…
§ Phase recovery maybe easier then you thought

§ Computational Imaging offers a new perspective to 
optical sensing problems

– Regularized iterative inversion (MBIR)
– The EM Algorithm
– Plug-and-Play methods
– Convolutional neural networks


