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Outline

1. What 1s Computational Imaging?

2. My view of phase recovery...

3. Digital holographic “single shot” 1maging through deep turbulence
— Leverages advanced signal processing techniques
— Integrates physics and machine learning models
— Is fast and effective



What is Computational Imaging?
(Integrated Imaging)

" Traditional sensor design is reaching its limits

= Make the most informative measurement, rather than the
“purest” measurement.

= Mick Jagger’s Theorem: You can’t always get what you want, but if you
try sometimes, you might get what you need.



Model Based Iterative Reconstruction (MBIR):
A General Framework for Solving Inverse Problems

:- y

J(x)

X < arg max{log p(ylx)+log p(x)}

forward model prior model

X — Reconstructed object
Yy — Measurements from physical system



“Thin Manifold” View of Prior Models
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= Notice that prior manifold fills the space but...
*Not a linear manifold

*PCA can not effectively reduce dimension

= But 1t has thickness

» Dimension of measurement > dimension of manifold



Phase Recovery for Complex Signals

= [f you can only measure energy, then...

(1) —»[ |2 ]—»y(n)

— So you only know that:

[x(m)| = Vy)
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Phase Recovery with
Heterodyne Demodulation
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* Heterodyne

OC
y(n) = 2 Re{ x(n)e/®o"} + Ix(n)l2 + 1

* Complex signal recovery
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Digital Holography:
Math versus Experiment
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Digital Holography: Graphical

= Heterodyne
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* Complex signal recovery
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General Phase Recovery

* Detect magnitude of linear transform A €

SRMXN

A 2 .
X _’[ Linear Transform H |.| H \/— ]_’ y

— Can we recover x?

Answer: Mostly “yes” if M > 2N.
Sometimes “yes” when M < 2N.

— Alternating minimization:
Repeat {

X « argmin{ y.*el? — Ax
X

0 « argmgn{ y.* el? —Ax|

|
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2} — Supe’ easy



Example: Phase Recovery with Aliasing
with Dennis Lee and Andy Weiner

* What 1f there 1s aliasing? (w, too small)

A % N
x(n)-»@—-[ B ]—»4@
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* Then heterodyning doesn’t work, right???

Answer: Yes, but we can still recover x
using regularized iterative phase recovery!




Example: Phase Recovery with Aliasing®

= Coherently imaged phase grating with aliasing:
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(b) Power Spectrum of (a) (c) Fourier Filtering
Applied to (a)

"Regularized iterative reconstruction recovers phase!
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*D. J. Lee, C. A. Bouman, and A. M. Weiner, “Single Shot Digital Holography Using Iterative Reconstruction with Alternating
Updates of Amplitude and Phase,” Computational Imaging Conference 2016



Example: Ptychography
with Qiuchen Zhai and Greg Buzzard

Phase Recovery!!



Ptychographic Reconstruction
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Imaging through Turbulence
with Casey Pellizzari and Mark Spencer

Laser source

)

Energy detector j: \ Atmospheric

<€

Turbulence

y — Complex measurement

y — A¢ g _I_ wW g — Complex reflectance coefficient
\

w — Complex noise
. Ay — Linear propagation model
Assumes Fourier contains . .
demodulation speckle ¢ — Unknown phase distortion



Variables to remember...

g — reflection coefficient

g9

Doesn’t Exist

complex valued image

|g|*— mag? of reflection coefficient

2

r — reflectance

speckly image

de-speckled image




Conventional Estimation of r

*Speckle averaging

* Average many “independent shots™

- Depends on fact that E||g|?|r| = r

Image

As number of realizations,
N, increases, the
distribution converges to 7.

Distribution




Huge Advantage of Estimating r

*Estimating r 1s much better because...

— 7 lives 1n a lower dimensional space

measurements
>> large = easer phase recovery

NRL:

g — speckly r —good
(high dimension) (low dimension)

unknowns

— Results 1n less noisy image

Problem: Estimating 7 1s difficult!



MBIR (Model-Based lterative Reconstruction)

® Forward Model Stochastzc and nonlinear

Prior Model Complex Linear
(r) Gaussian Transform
P c,r)

Complex noise

Phase dlstortlon

¢ Image and }
®* MBIR estimation of (r, ¢p) given y phase priors

M
(7, ¢) = argmax{logp(yIr, ¢) + logp(r) + log p(¢)}

where p(ylr) = j p(ylg, H)p(gIr)dg

\ Intractable integral

‘ Oh no! ... Is MBIR 1mpossible? ‘




The Magic: EM Algorithm to the Rescue

= Define Q function (E-step)
Q(r,p;r',¢") = Ellogp(ylg, @) +logp(glr) +logp(r) +logp(d) |y, 7', ¢']

E-step

= EM algorithm for MAP estimation (local min)

Initialize (r, ¢)
Repeat {

(r',¢') « arég gl)ax Q(r,¢;r',d")
Return (r', ¢")

M-step




Iterative EM Optimization

Iteration (k) Iteration (k + 1)
Q(r, ¢;7',¢")

c(r,¢) Qr, ;1. ¢") c(r, )

7

The beauty of the EM algorithm is that Q is crafted in such a way that it

upper bounds c. Therefore, by minimizing Q, we converge to a minima of c




Magical Closed Form for Q Function!

= When AgAd, ~ [, then

/ Only function of ¢

Q(r, ;1,8 ~ —— Re{yH Ayu) + p(¢)
P17, av% Yy Agpl p Pixel-wise

N / function of r

1 2
+log|D(r)| + ;(Ci,i + luwl?) + p(r)
l

=1

T,
C=D —CcLpH
\<T’/U‘%’ T 1) = Cogdey

diagonal matrix

where




Isoplanatic Experiments

Source

Digital

Hologram
Atmospheric-Phase Errors  pypil PlaneDetector g

Isoplanatic = shift-invariant PSF



DH-MBIR: Isoplanatic Result (Experimental
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DH-MBIR: Strehl Ratio vs SNR (Simulated)

MBIR produces more accurate phase-error estimates than
Image Sharpening at low SNRs and/or strong phase errors
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Anisoplanatic Experiments
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We set (%) = 1 pixel

5 08, isoplanatic angle
07 A\ diffraction limit 6,=1 = more PSFs than pixels in
n the image




DH-MBIR: Anisoplanatic Results (Simulated)
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Plug and Play/Consensus
Equilibrium Approach

= PnP/CE 1s a framework for integrating models:

— Physics based model of DH sensor
— Machine learning model of images and phase errors

= Approach:
— Build an “agent” for forward model and prior model
— Forward model uses EM algorithm

— Prior model 1s a convolutional neural network (CNN)
denoiser



PnP Reconstruction (Simulation Data)
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Its the power of the deep neural network...,

— Dong Hye Ye



Takeaways...

" Phase recovery maybe easier then you thought

= Computational Imaging offers a new perspective to
optical sensing problems
— Regularized iterative inversion (MBIR)
— The EM Algorithm
— Plug-and-Play methods
— Convolutional neural networks



