The Magic of Intelligent Coherent Optical Processing

Charles A. Bouman, Purdue ECE

In collaboration with:

Maj. Casey Pellizzari (soon to be Lt. Col.) Mark Spencer, Air Force Research Laboratory

Advances in Computational and Quantum Imaging Workshop, Purdue University September 11, 2019

Outline

1. What is Computational Imaging?

2. My view of phase recovery...

3. Digital holographic "single shot" imaging through deep turbulence

- Leverages advanced signal processing techniques
- Integrates physics and machine learning models
- Is fast and effective

What is Computational Imaging? (Integrated Imaging)

- Traditional sensor design is reaching its limits
- Make the most informative measurement, rather than the "purest" measurement.
- Mick Jagger's Theorem: You can't always get what you want, but if you try sometimes, you might get what you need.

Model Based Iterative Reconstruction (MBIR): A General Framework for Solving Inverse Problems

$$\hat{x} \leftarrow \arg \max \left\{ \log p(y \mid x) + \log p(x) \right\}$$
forward model prior model

 \hat{x} – Reconstructed object y – Measurements from physical system

"Thin Manifold" View of Prior Models

- Notice that prior manifold fills the space but...
 - •Not a linear manifold
 - •PCA can not effectively reduce dimension
- But it has thickness
- Dimension of measurement > dimension of manifold

Phase Recovery for Complex Signals

• If you can only measure energy, then...

$$x(n) \rightarrow [|\cdot|^2 \rightarrow y(n)$$

- So you only know that:

$$|x(n)| = \sqrt{y(n)}$$
$$\angle x(n) = ??$$

Phase Recovery with Heterodyne Demodulation

Heterodyne

Complex signal recovery

$$y(n) \rightarrow DC Block$$
 Filter Pos.
Freq. $x(n)$
 $e^{-j\omega_o n}$

Digital Holography: Math versus Experiment

Digital Holography: Graphical

Heterodyne

General Phase Recovery

• Detect magnitude of linear transform $A \in \Re^{M \times N}$

$$x \longrightarrow \stackrel{A}{\underset{\text{Linear Transform}}{A}} \longrightarrow |\cdot|^2 \longrightarrow \sqrt{\cdot} \xrightarrow{} y$$

- Can we recover x?

Answer: Mostly "yes" if $M \ge 2N$. Sometimes "yes" when M < 2N.

– Alternating minimization:

$$\begin{array}{l} Repeat \left\{ \\ \hat{x} \leftarrow \arg\min_{x} \left\{ \left\| y * e^{j\hat{\theta}} - Ax \right\|^{2} \right\} & \text{LS inversion} \\ \hat{\theta} \leftarrow \arg\min_{\theta} \left\{ \left\| y * e^{j\theta} - Ax \right\|^{2} \right\} & \text{Super easy} \\ \end{array} \right\}$$

Example: Phase Recovery with Aliasing with Dennis Lee and Andy Weiner

• What if there is aliasing? (ω_o too small)

Then heterodyning doesn't work, right???

Answer: Yes, but we can still recover *x* using regularized iterative phase recovery!

Example: Phase Recovery with Aliasing*

Coherently imaged phase grating with aliasing:

Applied to (a)

Regularized iterative reconstruction recovers phase!

*D. J. Lee, C. A. Bouman, and A. M. Weiner, "Single Shot Digital Holography Using Iterative Reconstruction with Alternating Updates of Amplitude and Phase," *Computational Imaging Conference* 2016

Example: Ptychography with Qiuchen Zhai and Greg Buzzard

Ptychographic Reconstruction

Mag and Phase images

Diffraction measurements

Reconstruction

04

Imaging through Turbulence with Casey Pellizzari and Mark Spencer

Laser source

- y Complex measurement
- \boldsymbol{g} Complex reflectance coefficient
- *w* Complex noise
- A_{ϕ} Linear propagation model
- ϕ Unknown phase distortion

Variables to remember...

\boldsymbol{g} – reflection coefficient

complex valued image

$|g|^2 - \text{mag}^2$ of reflection coefficient

speckly image

r – reflectance

de-speckled image

Conventional Estimation of *r*

Speckle averaging

- Average many "independent shots"
- Depends on fact that $E[|g|^2|r] = r$

 S_i

g

Huge Advantage of Estimating *r*

•Estimating r is much better because...

- *r* lives in a lower dimensional space

 $\left(\frac{measurements}{unknowns}\right) >>$ large \Rightarrow easer phase recovery

- Results in less noisy image

g – speckly (high dimension)

r – good (low dimension)

Problem: Estimating r is difficult!

MBIR (Model-Based Iterative Reconstruction)

The Magic: EM Algorithm to the Rescue

• Define Q function (E-step) $Q(r,\phi;r',\phi') = E[\log p(y|g,\phi) + \log p(g|r) + \log p(r) + \log p(\phi) |y,r',\phi']$ E-step

• EM algorithm for MAP estimation (local min)

Initialize (r, ϕ) Repeat { $(r', \phi') \leftarrow \arg \max_{(r,\phi)} Q(r,\phi;r',\phi')$ } Return (r', ϕ')

Iterative EM Optimization

The beauty of the EM algorithm is that *Q* is crafted in such a way that it upper bounds c. Therefore, by minimizing *Q*, we converge to a minima of *c*

Magical Closed Form for *Q* Function!

• When $A_{\phi}^{H}A_{\phi} \approx I$, then $Q(r,\phi;r',\phi') \approx -\frac{2}{\sigma_{w}^{2}}Re\{y^{H}A_{\phi}\mu\} + p(\phi)$ Pixel-wise $+\log|\mathcal{D}(r)| + \sum_{i=1}^{N}\frac{1}{r_{i}}(C_{i,i} + |\mu_{i}|^{2}) + p(r)$

where

$$C = \mathcal{D}\left(\frac{r'}{r'/\sigma_w^2 + 1}\right) \quad \mu = C \frac{1}{\sigma_w^2} A_{\phi'}^H Y$$

diagonal matrix

Isoplanatic Experiments

Isoplanatic \Rightarrow **shift-invariant PSF**

DH-MBIR: Isoplanatic Result (Experimental)

DH-MBIR: Strehl Ratio vs SNR (Simulated)

MBIR produces more accurate phase-error estimates than Image Sharpening at low SNRs and/or strong phase errors

Anisoplanatic Experiments

$$\tilde{\theta}_0 = \frac{\theta_0}{\left(\frac{\lambda}{D}\right)} = \frac{isoplanatic \ angle}{diffraction \ limit}$$

We set
$$\left(\frac{\lambda}{D}\right) = 1 \ pixel$$

 $\tilde{\theta}_0 = 1 \Rightarrow$ more PSFs than pixels in the image

DH-MBIR: Anisoplanatic Results (Simulated)

Peak Strehl ratio vs. $\tilde{\theta}_0$, averaged over 10 i.i.d. realizations

Simulation Parameters:

- 256x256 images
- 3 phase screens
- $\left(\frac{\lambda}{D}\right) = 1 \ pixel$

$D/r_{0sw} = 5$ 0	
Original	5
	10
4 m G1 m: 4 m G1 m: + m G1 m 5 m m ≡ ² 5 m m ≡ ¹ 5 m m ≡ USAF-1951 USAF-1951 USAF-195	-15
2 1 2 1 2 1 2 1 1 2 1 1 1 2 1 <td>-25 2 S = 1 -25 1 USAF-1951 -20</td>	-25 2 S = 1 -25 1 USAF-1951 -20
100 36 7.7	1 [dB]
$ ilde{ heta}_0$	

Plug and Play/Consensus Equilibrium Approach

- PnP/CE is a framework for integrating models:
 - Physics based model of DH sensor
 - Machine learning model of images and phase errors
- Approach:
 - Build an "agent" for forward model and prior model
 - Forward model uses EM algorithm
 - Prior model is a convolutional neural network (CNN) denoiser

PnP Reconstruction (Simulation Data)

"It's the power of the deep neural network...," — Dong Hye Ye

Takeaways...

- Phase recovery maybe easier then you thought
- Computational Imaging offers a new perspective to optical sensing problems
 - Regularized iterative inversion (MBIR)
 - The EM Algorithm
 - Plug-and-Play methods
 - Convolutional neural networks