

Lock-in Imaging Below Diffraction Limit

Amir Ziabari, Sami Alajlouni, Kerry Maize, and <u>Ali Shakouri</u> Birck Nanotechnology Center, Purdue University, IN 47906

Acknowledgement: Indiana Innovation Institute (IN3)

Purdue Workshop on Advanced Computational and Quantum Imaging; Sept. 11, 2019

Quantum Engineered Systems & Technology

High resolution thermoreflectance imaging

11 - 12 H H H H H

J. Christofferson, A. Shakouri, *Rev. of Scientific Instruments*, 2005 K. Yazawa, A. Shakouri, *Electronics Cooling Magazine*, Vol. 3, p.10, March 2011

Disclosure: Commercialization by Microsanj.com

Transient Thermal Imaging of HEMT

28V, 300mA, 2.19W/mm

GaN High Electron Mobility Transistor (HEMT)

Kerry Maize et al., IEEE IRPS 2013, ...

Temperature Resolution

- Temperature resolution on gold region with 8x8 pixels
- Resolution can be improved by $1/\sqrt{t}$ (t is the averaging time)

Temperature profile near nanoheater sources

Sub-Diffraction Thermoreflectance Imaging

Optical Images

Thermal Images

Point Spread Function (PSF)

Metals & semiconductors have thermoreflectance coefficients with opposite signs (at certain wavelengths)

radius (r)

Radius at Image Plane r = 0.61λ/NA

Amir Ziabari

http://www.olympusmicro.com/ primer/java/mtf/airydisksize/

Diffraction (Forward Model) –part I

Diffraction can be modelled using image convolution (point spread function)

Diffraction (Forward Model) - part II

A. Shakouri; 9/11/2019 7

X distance (μm)

Nanoscale Heat Flow at room T

"**small**" **device** (W = 265nm)

Hydrodynamic Model for Heat Flow Quest

Heat Flux Temperature Gradient

 $\vec{q} - [l^2(\nabla^2 \vec{q} + 2\nabla \nabla \cdot \vec{q})] = -\kappa \nabla T$

Nonlocality induced by normal phonon scattering and gives rise to hydrodynamic effects over characteristic length *l*

Xavier Alvarez: Univ. Autonoma de Barcelona

B. Vermeersch, et al., Superdiffusive... I & II, PRB. 2015 (ArXiv)

Heater and sensor lines

11 M M M I

aziabari@p

A. Ziabari et al. (Nat. Comm. 2018)

5 µm

Sub-Diffraction (Inverse Problem)

$$\hat{f} \leftarrow argmin_f \left\{ \frac{1}{2\sigma_w^2} \parallel g - \mathbf{H}f \parallel^2 + \frac{1}{p\sigma_x^p} \sum_{\{i,j\} \in C} B_{i,j} |f_i - f_j|^p \right\}$$

- g: measured image (Blurred and noisy)
- H: matrix representaion of the blurring kernel σ_w^2 : Noise variance

reconstructed image

B: Weight matrix for the neighborhood pixels σ_x : Regularization $p \in [1,2]$ C: Neighborhood Clicks

Maximum A-Posteriori (MAP) with non-Gaussian Markov Random Field

Sub-Diffraction (Inverse Problem)

Extracted temperature profile for 200nm heater line at different noise levels

Minimum feature size vs. SNR

Temperature of features down to 100nm with errors less than 20% reconstructed

Experiment: Thermal Image reconstruction (200nm)

Diffraction Limited Imaging (point sources)

 $\langle \rangle$

Statistical Analysis of Diffraction Limited Imaging

Summary

Far-field thermoreflectance imaging

- □ Lock-in imaging with mega-pixel CCD Camera (800ps time, 0.01C temperature resolution)
- □ Can detect temperature profile of 100-200nm devices
- □ <u>Forward image blurring</u> can give accurate temperature map
- $\Box \underline{Image \ reconstruction} \ works \ for \ high \ SNR \ (need \ to \ know \ optical system \ parameters, \ device \ SEM, \ and \ bulk \ C_{TR})$

Question: Can one improve temperature and/or spatial resolution using Quantum + Computations Imaging?

shakouri@purdue.edu