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Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier
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Linear Regression Reviewed

Linear regression is actually a discriminative method.

Do not require a distributional model.

Construct the hypothesis function directly:

h(x) =

{
+1, if g(x) > 0,

−1, if g(x) < 0.

Consider a binary classification problem with discriminant function:

g(x) = wTx + w0

The goal is to determine the parameters θ = {w ,w0}
Training data: (xn, yn)Nn=1

xn ∈ Rd is the input vector
yn ∈ {−1,+1} is the corresponding label
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Geometry of Linear Regression

The discriminant function g(x) is linear

The hypothesis function h(x) = sign(g(x)) is a unit step
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Loss Function

All discriminant algorithms have a Training Loss Function

J(θ) =
1

N

N∑
n=1

L(g(xn), yn).

In linear regression,

J(θ) =
1

N

N∑
n=1

(g(xn)− yn)2

=
1

N

N∑
n=1

(wTxn + w0 − yn)2

=
1

N

∥∥∥∥∥∥∥
xT

1 1
...

...
xT
N 1

[w
w0

]
−

y1...
yN


∥∥∥∥∥∥∥
2

=
1

N
‖Aθ − y‖2.
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Solution of Linear Regression

Theorem (Linear Regression Solution)

The loss function of a linear regression model is given by

J(θ) = ‖Aθ − y‖2,

of which the minimizer is

θ∗ = (ATA)−1ATy .

Take derivative and setting to zero:

∇θJ(θ) = ∇θ

{
‖Aθ − y‖2

}
= 2AT (Aθ − y) = 0.

So solution is θ∗ = (ATA)−1ATy , assuming ATA is invertible.
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When ATA is large

Computing (ATA)−1 directly is infeasible for large-scale datasets with
a large number of variables

Consider using iterative algorithms such as gradient descent

The gradient descent is given by the iteration:

θ(k+1) = θ(k) − η∇θJ(θ(k))

= θ(k) − η(2ATAθ(k) − 2ATy)

A pictorial illustration of the gradient descent step:
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Treating Linear Regression as Maximum-Likelihood

Minimizing J(θ) is the same as solving a maximum-likelihood:

θ∗ = argmin
θ

‖Aθ − y‖2

= argmin
θ

N∑
n=1

(aT
n θ − yn)2

= argmax
θ

exp

{
−

N∑
n=1

(aT
n θ − yn)2

}

= argmax
θ

N∏
n=1

{
1√

2πσ2
exp

{
−(aT

n θ − yn)2

2σ2

}}
Assume noise is i.i.d. Gaussian with variance σ2.
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Treating Linear Regression as Maximum-a-Posteriori

We can modify the MLE by adding a prior

pΘ(θ) = exp

{
− ρ(θ)

β

}
.

Then, we have a MAP problem:

θ∗ = argmax
θ

N∏
n=1

{
1√

2πσ2
exp

{
−(aT

n θ − yn)2

2σ2

}}
exp

{
− ρ(θ)

β

}

= argmin
θ

1

2σ2

N∑
n=1

(aT
n θ − yn)2 +

1

β
ρ(θ)

= argmin
θ

‖Aθ − y‖2 + λρ(θ), where λ = 2σ2/β.

ρ(·) is called regularization function.

Useful when ATA is not invertible.
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Ridge Regression

One option: Choose a Gaussian prior

exp

{
− ρ(θ)

β

}
= exp

{
− ‖θ‖

2

2σ20

}
Then, the MAP becomes

θ∗ = argmax
θ

N∏
n=1

{
1√

2πσ2
exp

{
−(aT

n θ − yn)2

2σ2

}}
exp

{
− ‖θ‖

2

2σ20

}

= argmin
θ

N∑
n=1

(aT
n θ − yn)2 +

σ2

σ20︸︷︷︸
=λ

‖θ‖2

= argmin
θ

‖Aθ − y‖2 + λ‖θ‖2

This is called Tikhonov regularization or Ridge regression.




