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Connection with Bayesian Decision Rule

With infinite training samples, J(θ) converges almost surely to its
expectation

1

N

N∑
n=1

(g(xn)− yn)2
p−→ Ex ,y [g(x)− y)2].

Minimizing J(θ) is essentially minimizing the expectation

θ∗ = argmin
w ,w0

1

N

N∑
n=1

(g(xn)− yn)2

≈ argmin
w ,w0

Ex ,y

[
(wTx + w0 − y)2

]
.
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Summary of the Result

Theorem (Conditions for Linear Regression = Bayes)

Suppose that all the following three conditions are satisfied:

(i) The likelihood p(x |i) is Gaussian satisfying

p(x |i) =
1√

(2π)d |Σ|
exp

{
−1

2
(x − µi )

TΣ−1(x − µi )

}
, i ∈ {−1,+1}

(ii) The prior is uniform: py (+1) = py (−1) = 1
2 .

(iii) The number of training samples goes to infinity.

Then, the linear regression model parameter (w ,w0) is given by

w = Σ̃
−1

(µ1 − µ−1), w0 = −1

2
(µ1 + µ−1)Σ̃

−1
(µ1 − µ−1),

where Σ̃
def
= Σ/2, and Σ is the covariance of the Gaussian.



c©Stanley Chan 2020. All Rights Reserved.

Sketch of Proof

Let us make some assumptions:

Likelihood: Gaussian with equal covariance:

p(xn|y = +1) =
1√

(2π)d |Σ|
exp

{
−1

2
(xn − µ+1)TΣ−1(xn − µ+1)

}
p(xn|y = −1) =

1√
(2π)d |Σ|

exp

{
−1

2
(xn − µ−1)TΣ−1(xn − µ−1)

}
Prior: Equal prior:

py (+1) =
1

2

py (−1) =
1

2
.
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Sketch of Proof

Taking derivative w.r.t. (w ,w0) yields

d

dw
Ex ,y

[
(wTx + w0 − y)2

]
= 2

(
E[xxT ]w + E[x ]w0 − E[xy ]

)
d

dw0
Ex ,y

[
(wTx + w0 − y)2

]
= 2

(
E[x ]Tw + w0 − E[y ]

)
What is E[x ]?

E[x ] = E[x |y = 1]py (+1) + E[x |y = −1]py (−1)

= µ1

(
1

2

)
+ µ−1

(
1

2

)
=

1

2
(µ1 + µ−1).

What is E[xy ]?

E[xy ] = E[xy |y = +1]py (+1) + E[xy |y = −1]py (−1)

= (+µ1)

(
1

2

)
+ (−µ−1)

(
1

2

)
=

1

2
(µ1 − µ−1).
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Sketch of Proof

What is E
[
(x − E[x ])(x − E[x ])T

]
?

E
[
(x − E[x ])(x − E[x ])T

]
= E

[
(x − E[x ])(x − E[x ])T |y = +1

]
py (+1)

+ E
[
(x − E[x ])(x − E[x ])T |y = −1

]
py (−1)

=
1

2
Σ +

1

2
Σ = Σ.

This will allow us to compute E[xxT ]:

E
[
(x − E[x ])(x − E[x ])T

]
= E[xxT ]− E[x ]E[x ]T .

The remaining is just linear algebra. See Appendix.
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Implication

Linear regression assumes equal covariance for both classes

-5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

Bayesian allows different variance Σi .

They are equal only when number of training samples is large.
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When will Linear Regression Go Wrong? (1)

Example 1: When the classes are intrinsically unbalanced.

-5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

Bayesian gives nonlinear decision boundary



c©Stanley Chan 2020. All Rights Reserved.

When will Linear Regression Go Wrong? (1)

When the classes are intrinsically unbalanced.

One class has a significantly larger variance than the other.

Nothing to do with the number of training samples.

Regression goes wrong because the big variance class dominates the
sum square error.

So you spend more effort to make that class “happy”.

Bayesian decision rule takes care of this by allowing different Σi .
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When will Linear Regression Go Wrong? (2)

Example 2: When training samples are unbalanced.
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Bayesian performs equally bad.



c©Stanley Chan 2020. All Rights Reserved.

When will Linear Regression Go Wrong? (2)

When training samples are unbalanced.

One class has more training samples than the other class.

Nothing to do with the intrinsic distribution. You just did not sample
the training samples uniformly from the true distribution.

Regression goes wrong because the more sample class dominate the
sum square error.

So you spend more effort to make the majority “happy”.

Bayesian suffers too because it has a bad estimate of the mean.
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Does Regularization Help?

We can put regularization to linear regression

J(θ) = ‖Aθ − y‖2 + λ‖θ‖2

Can help some bizarre cases when A is rank deficient.

But what regularization to use? How to control λ?

Prior in Bayesian is a lot more intuitive.

µ̂ =
σ2

Nσ20 + σ2
µ0 +

Nσ20
Nσ20 + σ2

µML.

When N is small, we have the prior to control the estimate.

Linear regression does not have this capability, unless you know what
the decision weights should look like.
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When will Linear Regression Go Wrong? (3)

Example 3: “Outliers”

One sample point appears “abnormally”

Bayesian suffers from the same issue

But Bayesian can use the prior term to mitigate outliers

Of course, you can also do data pre-processing in linear regression to
remove outliers
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Reading List

Linear Regression and Bayesian Decision

Chris Bishop’s Pattern Recognition, Chapter 3.1, 4.1

Hastie-Tibshirani-Friedman’s Elements of Statistical Learning,
Chapter 3.2, 3.4

Stanford CS 229 Discriminant Algorithms
http://cs229.stanford.edu/notes/cs229-notes1.pdf

http://cs229.stanford.edu/notes/cs229-notes1.pdf
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Appendix
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Proof of Main Result

By following the steps in the proof sketch, we have shown that

d

dw
Ex ,y

[
(wTx + w0 − y)2

]
= 2

(
E[xxT ]w + E[x ]w0 − E[xy ]

)
= 0

d

dw0
Ex ,y

[
(wTx + w0 − y)2

]
= 2

(
E[x ]Tw + w0 − E[y ]

)
= 0

Look at the second equation

−E[x ]E[x ]Tw −E[x ]w0 +E[x ]E[y ] = 0
+E[xxT ]w +E[x ]w0 −E[xy ] = 0

This gives us

(E[xxT ]− E[x ]E[x ]T )w + 0− (E[xy ]− E[x ]E[y ]) = 0.
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Proof of Main Result

Therefore, we have

(E[xxT ]− E[x ]E[x ]T )︸ ︷︷ ︸
Σ

w + 0− ( E[xy ]︸ ︷︷ ︸
= 1

2
(µ+1−µ−1)

− E[x ]E[y ]︸︷︷︸
=0

) = 0.

This means that

Σw =
1

2
(µ+1 − µ−1),

which gives us

w =
1

2
Σ−1(µ+1 − µ−1).

Compare to the Bayesian decision rule for equal covariance:

w = Σ−1(µ+1 − µ−1).

The only difference is the factor 1/2.
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Proof of Main Result

Now let us determine w0.

Look at the second equation again:

E[x ]Tw + w0 − E[y ] = 0

This means

w0 = E[y ]− E[x ]Tw

= 0−
(

1

2
(µ+1 + µ−1)

)T

w

= 0−
(

1

2
(µ+1 + µ−1)

)T (1

2
Σ−1(µ+1 − µ−1)

)
= −1

4
(µ+1 + µ−1)Σ−1(µ+1 − µ−1).
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Proof of Main Result

If we want to write the decision boundary as wT (x − x0) = 0,

then we can show that

wT (x − x0) =

(
1

2
Σ−1(µ+1 − µ−1)

)
(x − x0) .

Since

w0 = −1

4
(µ+1 − µ−1)Σ−1(µ+1 + µ−1),

in order to make w0 = wTx0, we should choose

x0 =
1

2
(µ+1 + µ−1).

This is the same as the Bayesian decision rule with equal covariance.




