ECE595 / STAT598: Machine Learning I
Lecture 13.2: Connection between Linear Regression and Bayesian

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering
Purdue University
Outline

Generative Approaches
- Lecture 9 Bayesian Decision Rules
- Lecture 10 Evaluating Performance
- Lecture 11 Parameter Estimation
- Lecture 12 Bayesian Prior
- Lecture 13 Connecting Bayesian and Linear Regression

Today’s Lecture
- Linear Regression Review
 - Linear regression in the context of classification
 - Linking linear regression with MLE and MAP
- Connection between Linear Regression and Bayesian
 - Expected Loss
 - Main Result
 - Implications
Connection with Bayesian Decision Rule

- With infinite training samples, $J(\theta)$ converges almost surely to its expectation

$$\frac{1}{N} \sum_{n=1}^{N} (g(x_n) - y_n)^2 \xrightarrow{p} \mathbb{E}_{x,y}[g(x) - y]^2.$$

- Minimizing $J(\theta)$ is essentially minimizing the expectation

$$\theta^* = \arg\min_{\mathbf{w}, w_0} \frac{1}{N} \sum_{n=1}^{N} (g(x_n) - y_n)^2$$

$$\approx \arg\min_{\mathbf{w}, w_0} \mathbb{E}_{x,y} \left[(\mathbf{w}^T x + w_0 - y)^2 \right].$$
Summary of the Result

Theorem (Conditions for Linear Regression = Bayes)

Suppose that all the following three conditions are satisfied:

(i) The likelihood $p(x|i)$ is Gaussian satisfying

$$p(x|i) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp \left\{ -\frac{1}{2} (x - \mu_i)^T \Sigma^{-1} (x - \mu_i) \right\} , \ i \in \{-1, +1\}$$

(ii) The prior is uniform: $p_y(+1) = p_y(-1) = \frac{1}{2}$.

(iii) The number of training samples goes to infinity.

Then, the linear regression model parameter (w, w_0) is given by

$$w = \tilde{\Sigma}^{-1} (\mu_1 - \mu_{-1}), \quad w_0 = -\frac{1}{2} (\mu_1 + \mu_{-1}) \tilde{\Sigma}^{-1} (\mu_1 - \mu_{-1}),$$

where $\tilde{\Sigma} \overset{\text{def}}{=} \Sigma/2$, and Σ is the covariance of the Gaussian.
Sketch of Proof

Let us make some assumptions:

- **Likelihood**: Gaussian with equal covariance:

 \[
p(x_n|y = +1) = \frac{1}{\sqrt{(2\pi)^d|\Sigma|}} \exp \left\{ -\frac{1}{2}(x_n - \mu_+)^T \Sigma^{-1}(x_n - \mu_+) \right\}
 \]
 \[
p(x_n|y = -1) = \frac{1}{\sqrt{(2\pi)^d|\Sigma|}} \exp \left\{ -\frac{1}{2}(x_n - \mu_-)^T \Sigma^{-1}(x_n - \mu_-) \right\}
 \]

- **Prior**: Equal prior:

 \[
p_y(+1) = \frac{1}{2}
 \]
 \[
p_y(-1) = \frac{1}{2}
 \]
Sketch of Proof

- Taking derivative w.r.t. \((\mathbf{w}, w_0)\) yields
 \[
 \frac{d}{d\mathbf{w}} \mathbb{E}_{x,y} \left[(\mathbf{w}^T \mathbf{x} + w_0 - y)^2 \right] = 2 \left(\mathbb{E}[\mathbf{x} \mathbf{x}^T] \mathbf{w} + \mathbb{E}[\mathbf{x}] w_0 - \mathbb{E}[\mathbf{x} y] \right)
 \]
 \[
 \frac{d}{dw_0} \mathbb{E}_{x,y} \left[(\mathbf{w}^T \mathbf{x} + w_0 - y)^2 \right] = 2 \left(\mathbb{E}[\mathbf{x}]^T \mathbf{w} + w_0 - \mathbb{E}[y] \right)
 \]

- What is \(\mathbb{E}[\mathbf{x}]\)?
 \[
 \mathbb{E}[\mathbf{x}] = \mathbb{E}[\mathbf{x} | y = 1] p_y(+1) + \mathbb{E}[\mathbf{x} | y = -1] p_y(-1)
 \]
 \[
 = \mu_1 \left(\frac{1}{2} \right) + \mu_{-1} \left(\frac{1}{2} \right) = \frac{1}{2}(\mu_1 + \mu_{-1}).
 \]

- What is \(\mathbb{E}[\mathbf{x} y]\)?
 \[
 \mathbb{E}[\mathbf{x} y] = \mathbb{E}[\mathbf{x} y | y = +1] p_y(+1) + \mathbb{E}[\mathbf{x} y | y = -1] p_y(-1)
 \]
 \[
 = (+\mu_1) \left(\frac{1}{2} \right) + (-\mu_{-1}) \left(\frac{1}{2} \right) = \frac{1}{2}(\mu_1 - \mu_{-1}).
 \]
Sketch of Proof

- What is \(\mathbb{E} \left[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^T \right] \)?

\[
\mathbb{E} \left[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^T \right] = \mathbb{E} \left[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^T \big| y = +1 \right] p_y(1) + \mathbb{E} \left[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^T \big| y = -1 \right] p_y(-1)
\]

\[
= \frac{1}{2} \Sigma + \frac{1}{2} \Sigma = \Sigma.
\]

- This will allow us to compute \(\mathbb{E}[xx^T] \):

\[
\mathbb{E} \left[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^T \right] = \mathbb{E}[xx^T] - \mathbb{E}[x] \mathbb{E}[x]^T.
\]

- The remaining is just linear algebra. See Appendix.
Implication

- Linear regression assumes equal covariance for both classes.

- Bayesian allows different variance Σ_i.

- They are equal only when the number of training samples is large.
Example 1: When the classes are intrinsically unbalanced.

Bayesian gives nonlinear decision boundary
When will Linear Regression Go Wrong? (1)

- When the classes are intrinsically unbalanced.
- One class has a significantly larger variance than the other.
- Nothing to do with the number of training samples.
- Regression goes wrong because the big variance class dominates the sum square error.
- So you spend more effort to make that class “happy”.

Bayesian decision rule takes care of this by allowing different Σ_i.
Example 2: When training samples are unbalanced.

Bayesian performs equally bad.
When will Linear Regression Go Wrong? (2)

- When training samples are unbalanced.
- One class has more training samples than the other class.
- Nothing to do with the intrinsic distribution. You just did not sample the training samples uniformly from the true distribution.
- Regression goes wrong because the more sample class dominate the sum square error.
- So you spend more effort to make the majority “happy”.

- Bayesian suffers too because it has a bad estimate of the mean.
Does Regularization Help?

- We can put regularization to linear regression
 \[J(\theta) = \|A\theta - y\|^2 + \lambda\|\theta\|^2 \]

- Can help some bizarre cases when \(A \) is rank deficient.
- But what regularization to use? How to control \(\lambda \)?
- Prior in Bayesian is a lot more intuitive.

\[\hat{\mu} = \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_2^2 + \sigma^2} \mu_{ML}. \]

- When \(N \) is small, we have the prior to control the estimate.
- Linear regression does not have this capability, unless you know what the decision weights should look like.
Example 3: “Outliers”

One sample point appears “abnormally”

Bayesian suffers from the same issue

But Bayesian can use the prior term to mitigate outliers

Of course, you can also do data pre-processing in linear regression to remove outliers
Reading List

Linear Regression and Bayesian Decision

- Chris Bishop’s *Pattern Recognition*, Chapter 3.1, 4.1
- Hastie-Tibshirani-Friedman’s *Elements of Statistical Learning*, Chapter 3.2, 3.4
- Stanford CS 229 Discriminant Algorithms
Appendix
Proof of Main Result

By following the steps in the proof sketch, we have shown that

\[
\frac{d}{dw} \mathbb{E}_{x,y} \left[(w^T x + w_0 - y)^2 \right] = 2 \left(\mathbb{E}[xx^T] w + \mathbb{E}[x] w_0 - \mathbb{E}[xy] \right) = 0
\]

\[
\frac{d}{dw_0} \mathbb{E}_{x,y} \left[(w^T x + w_0 - y)^2 \right] = 2 \left(\mathbb{E}[x]^T w + w_0 - \mathbb{E}[y] \right) = 0
\]

- Look at the second equation

\[
-\mathbb{E}[x] \mathbb{E}[x]^T w - \mathbb{E}[x] w_0 + \mathbb{E}[x] \mathbb{E}[y] = 0
\]

\[
+\mathbb{E}[xx^T] w + \mathbb{E}[x] w_0 - \mathbb{E}[xy] = 0
\]

- This gives us

\[
(\mathbb{E}[xx^T] - \mathbb{E}[x] \mathbb{E}[x]^T) w + 0 - (\mathbb{E}[xy] - \mathbb{E}[x] \mathbb{E}[y]) = 0.
\]
Proof of Main Result

- Therefore, we have
 \[
 \left(\mathbb{E}[xx^T] - \mathbb{E}[x]\mathbb{E}[x]^T \right)w + 0 - \left(\mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y] \right) = 0.
\]

- This means that
 \[
 \Sigma w = \frac{1}{2}(\mu_+ - \mu_-),
 \]

- which gives us
 \[
 w = \frac{1}{2} \Sigma^{-1}(\mu_+ - \mu_-).
 \]

- Compare to the Bayesian decision rule for equal covariance:
 \[
 w = \Sigma^{-1}(\mu_+ - \mu_-).
 \]

- The only difference is the factor $1/2$.

Proof of Main Result

- Now let us determine \(w_0 \).
- Look at the second equation again:

\[
\mathbb{E}[x]^T w + w_0 - \mathbb{E}[y] = 0
\]

- This means

\[
w_0 = \mathbb{E}[y] - \mathbb{E}[x]^T w
\]

\[
= 0 - \left(\frac{1}{2}(\mu_+ + \mu_-) \right)^T w
\]

\[
= 0 - \left(\frac{1}{2}(\mu_+ + \mu_-) \right)^T \left(\frac{1}{2} \Sigma^{-1}(\mu_+ - \mu_-) \right)
\]

\[
= -\frac{1}{4}(\mu_+ + \mu_-)\Sigma^{-1}(\mu_+ - \mu_-).
\]
Proof of Main Result

- If we want to write the decision boundary as $\mathbf{w}^T(\mathbf{x} - \mathbf{x}_0) = 0$,
- then we can show that

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x}_0) = \left(\frac{1}{2} \Sigma^{-1}(\mu_+ - \mu_-)\right)(\mathbf{x} - \mathbf{x}_0).$$

- Since

$$w_0 = -\frac{1}{4}(\mu_+ - \mu_-)\Sigma^{-1}(\mu_+ + \mu_-),$$

- in order to make $w_0 = \mathbf{w}^T \mathbf{x}_0$, we should choose

$$\mathbf{x}_0 = \frac{1}{2}(\mu_+ + \mu_-).$$

- This is the same as the Bayesian decision rule with equal covariance.