ECE595[/]TAT598:[Machine_earning[] Lecture бxí Logistic Regression 1 - From Linear to Logistic \square

Spring[R020
Stanley[Chan

SchoolПf[Electrical/Zand[Computer【Engineering
Purdue [Jniversity

PURDUE

Overview

- In linear discriminant analysis (LDA), there are generally two types of approaches
- Generative approach: Estimate model, then define the classifier
- Discriminative approach: Directly define the classifier

Outline

Discriminative Approaches

- Lecture 14 Logistic Regression 1
- Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 1

- From Linear to Logistic
- Motivation
- Loss Function
- Why not L2 Loss?
- Interpreting Logistic
- Maximum Likelihood
- Log-odd
- Convexity
- Is logistic loss convex?
- Computation

Geometry of Linear Regression

- The discriminant function $g(x)$ is linear
- The hypothesis function $h(\boldsymbol{x})=\operatorname{sign}(g(\boldsymbol{x}))$ is a unit step

From Linear to Logistic Regression

- Can we replace $g(x)$ by $\operatorname{sign}(g(x))$?
- How about a soft-version of $\operatorname{sign}(g(x))$?
- This gives a logistic regression.

Sigmoid Function

- The function

$$
h(\boldsymbol{x})=\frac{1}{1+e^{-g(\boldsymbol{x})}}=\frac{1}{1+e^{-\left(\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}\right)}}
$$

is called a sigmoid function.

- Its 1 D form is

$$
h(x)=\frac{1}{1+e^{-a\left(x-x_{0}\right)}}, \quad \text { for some } a \text { and } x_{0}
$$

- a controls the transient speed
- x_{0} controls the cutoff location

Sigmoid Function

- Note that

$$
\begin{aligned}
& h(x) \rightarrow 1, \quad \text { as } \quad x \rightarrow \infty \\
& h(x) \rightarrow 0, \quad \text { as } \quad x \rightarrow-\infty
\end{aligned}
$$

- So $h(x)$ can be regarded as a "probability".

Sigmoid Function

- Derivative is

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{1+e^{-a\left(x-x_{0}\right)}}\right) & =-\left(1+e^{-a\left(x-x_{0}\right)}\right)^{-2}\left(e^{-a\left(x-x_{0}\right)}\right)(-a) \\
& =a\left(\frac{e^{-a\left(x-x_{0}\right)}}{1+e^{-a\left(x-x_{0}\right)}}\right)\left(\frac{1}{1+e^{-a\left(x-x_{0}\right)}}\right) \\
& =a\left(1-\frac{1}{1+e^{-a\left(x-x_{0}\right)}}\right)\left(\frac{1}{1+e^{-a\left(x-x_{0}\right)}}\right) \\
& =a[1-h(x)][h(x)] .
\end{aligned}
$$

- Since $0<h(x)<0$, we have $0<1-h(x)<1$.
- Therefore, the derivative is always positive.
- So h is an increasing function.
- Hence h can be considered as a "CDF".

Sigmoid Function

Predictions for $\theta=[0.26105,3.0097,-2.1347]$ - accuracy: 98.4%

Probability map defined by θ

Decision boundary defined by θ

Probability map defined by θ

http://georgepavlides.info/wp-content/uploads/2018/02/logistic-binary-e1517639495140.jpg

From Linear to Logistic Regression

- Can we replace $g(x)$ by $\operatorname{sign}(g(x))$?
- How about a soft-version of $\operatorname{sign}(g(x))$?
- This gives a logistic regression.

Loss Function for Linear Regression

- All discriminant algorithms have a Training Loss Function

$$
J(\boldsymbol{\theta})=\frac{1}{N} \sum_{n=1}^{N} \mathcal{L}\left(g\left(x_{n}\right), y_{n}\right)
$$

- In linear regression,

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\frac{1}{N} \sum_{n=1}^{N}\left(g\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2} \\
& =\frac{1}{N} \sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}+w_{0}-y_{n}\right)^{2} \\
& =\frac{1}{N}\left\|\left[\begin{array}{cc}
\boldsymbol{x}_{1}^{T} & 1 \\
\vdots & \vdots \\
\boldsymbol{x}_{N}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{w} \\
w_{0}
\end{array}\right]-\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]\right\|^{2}=\frac{1}{N}\|\boldsymbol{A} \boldsymbol{\theta}-\boldsymbol{y}\|^{2} .
\end{aligned}
$$

Training Loss for Logistic Regression

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\sum_{n=1}^{N} \mathcal{L}\left(h_{\theta}\left(\boldsymbol{x}_{n}\right), y_{n}\right) \\
& =\sum_{n=1}^{N}-\left\{y_{n} \log h_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{n}\right)+\left(1-y_{n}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{n}\right)\right)\right\}
\end{aligned}
$$

- This loss is also called the cross-entropy loss.
- Why do we want to choose this cost function?
- Consider two cases

$$
\begin{aligned}
& \left(1-y_{n}\right)\left(1-\log h_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{n}\right)\right)=\left\{\begin{array}{ll}
0, & \text { if } \quad y_{n}=0,
\end{array} \quad \text { and } \quad h_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{n}\right)=0, ~ 子, ~ i f \quad y_{n}=0, \quad \text { and } \quad h_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{n}\right)=1 . ~ \$\right.
\end{aligned}
$$

- No solution if mismatch

Why Not L2 Loss?

- Why not use L2 loss?

$$
J(\boldsymbol{\theta})=\sum_{n=1}^{N}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}
$$

- Let's look at the 1D case:

$$
J(\theta)=\left(\frac{1}{1+e^{-\theta x}}-y\right)^{2}
$$

- This is NOT convex!
- How about the logistic loss?

$$
J(\theta)=y \log \left(\frac{1}{1+e^{-\theta x}}\right)+(1-y) \log \left(1-\frac{1}{1+e^{-\theta x}}\right)
$$

- This is convex!

Why Not L2 Loss?

- Experiment: Set $x=1$ and $y=1$.
- Plot $J(\theta)$ as a function of θ.

L2

Logistic

- So the L2 loss is not convex, but the logistic loss is concave (negative is convex)
- If you do gradient descent on L2, you will be trapped at local minima

