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Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier
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Outline

Discriminative Approaches

Lecture 14 Logistic Regression 1

Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 1

From Linear to Logistic
Motivation
Loss Function
Why not L2 Loss?

Interpreting Logistic
Maximum Likelihood
Log-odd

Convexity
Is logistic loss convex?
Computation
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Geometry of Linear Regression

The discriminant function g(x) is linear

The hypothesis function h(x) = sign(g(x)) is a unit step
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From Linear to Logistic Regression

Can we replace g(x) by sign(g(x))?

How about a soft-version of sign(g(x))?

This gives a logistic regression.
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Sigmoid Function

The function

h(x) =
1

1 + e−g(x)
=

1

1 + e−(wT
x+w0)

is called a sigmoid function.
Its 1D form is

h(x) =
1

1 + e−a(x−x0)
, for some a and x0,

a controls the transient speed
x0 controls the cutoff location
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Sigmoid Function

Note that

h(x)→ 1, as x →∞,
h(x)→ 0, as x → −∞,

So h(x) can be regarded as a “probability”.
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Sigmoid Function

Derivative is

d

dx

(
1

1 + e−a(x−x0)

)
= −

(
1 + e−a(x−x0)

)−2 (
e−a(x−x0)

)
(−a)

= a

(
e−a(x−x0)

1 + e−a(x−x0)

)(
1

1 + e−a(x−x0)

)
= a

(
1− 1

1 + e−a(x−x0)

)(
1

1 + e−a(x−x0)

)
= a[1− h(x)][h(x)].

Since 0 < h(x) < 0, we have 0 < 1− h(x) < 1.

Therefore, the derivative is always positive.

So h is an increasing function.

Hence h can be considered as a “CDF”.
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Sigmoid Function

http://georgepavlides.info/wp-content/uploads/2018/02/logistic-binary-e1517639495140.jpg 
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From Linear to Logistic Regression

Can we replace g(x) by sign(g(x))?

How about a soft-version of sign(g(x))?

This gives a logistic regression.
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Loss Function for Linear Regression

All discriminant algorithms have a Training Loss Function

J(θ) =
1

N

N∑
n=1

L(g(xn), yn).

In linear regression,

J(θ) =
1

N

N∑
n=1

(g(xn)− yn)2

=
1

N

N∑
n=1

(wTxn + w0 − yn)2

=
1

N

∥∥∥∥∥∥∥
x

T
1 1
...

...
xTN 1

[w
w0

]
−

y1...
yN


∥∥∥∥∥∥∥
2

=
1

N
‖Aθ − y‖2.
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Training Loss for Logistic Regression

J(θ) =
N∑

n=1

L(hθ(xn), yn)

=
N∑

n=1

−
{
yn log hθ(xn) + (1− yn) log(1− hθ(xn))

}
This loss is also called the cross-entropy loss.
Why do we want to choose this cost function?

Consider two cases

yn log hθ(xn) =

{
0, if yn = 1, and hθ(xn) = 1,

−∞, if yn = 1, and hθ(xn) = 0,

(1− yn)(1− log hθ(xn)) =

{
0, if yn = 0, and hθ(xn) = 0,

−∞, if yn = 0, and hθ(xn) = 1.

No solution if mismatch
1
2 
/ 
5
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Why Not L2 Loss?

Why not use L2 loss?

J(θ) =
N∑

n=1

(hθ(xn)− yn)2

Let’s look at the 1D case:

J(θ) =

(
1

1 + e−θx
− y

)2

.

This is NOT convex!

How about the logistic loss?

J(θ) = y log

(
1

1 + e−θx

)
+ (1− y) log

(
1− 1

1 + e−θx

)
This is convex!
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Why Not L2 Loss?

Experiment: Set x = 1 and y = 1.

Plot J(θ) as a function of θ.
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L2 Logistic

So the L2 loss is not convex, but the logistic loss is concave (negative
is convex)

If you do gradient descent on L2, you will be trapped at local minima




