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Outline

Discriminative Approaches

Lecture 14 Logistic Regression 1

Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 1

From Linear to Logistic
Motivation
Loss Function
Why not L2 Loss?

Interpreting Logistic
Maximum Likelihood
Log-odd

Convexity
Is logistic loss convex?
Computation
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Convexity of Logistic Training Loss

Recall that

J(θ) =
n∑

n=1

−
{
yn log

(
hθ(xn)

1− hθ(xn)

)
+ log(1− hθ(xn))

}
The first term is linear, so it is convex.
The second term: Gradient:

∇θ[− log(1− hθ(x))] = −∇θ

[
log

(
1− 1

1 + e−θT
x

)]
= −∇θ

[
log

e−θT
x

1 + e−θT
x

]
= −∇θ

[
log e−θT

x − log(1 + e−θT
x)
]

= −∇θ

[
−θTx − log(1 + e−θT

x)
]

= x +∇θ

[
log
(

1 + e−θT
x

)]
= x +

(
−e−θT

x

1 + e−θT
x

)
x = hθ(x)x .
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Convexity of Logistic Training Loss

Gradient of second term is

∇θ[− log(1− hθ(x))] = hθ(x)x .

Hessian is:

∇2
θ[− log(1− hθ(x))] = ∇θ [hθ(x)x ]

= ∇θ

[(
1

1 + e−θT
x

)
x

]
=

(
1

(1 + e−θT
x)2

)(
−e−θT

x

)
xxT

=

(
1

1 + e−θT
x

)(
1− 1

1 + e−θT
x

)
xxT

= hθ(x)[1− hθ(x)]xxT .
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Convexity of Logistic Training Loss

For any v ∈ Rd , we have that

vT∇2
θ[− log(1− hθ(x))]v = vT

[
hθ(x)[1− hθ(x)]xxT

]
v

= (hθ(x)[1− hθ(x)]) ‖vTx‖2 ≥ 0.

Therefore the Hessian is positive semi-definite.

So − log(1− hθ(x) is convex in θ.

Conclusion: The training loss function

J(θ) =
n∑

n=1

−
{
yn log

(
hθ(xn)

1− hθ(xn)

)
+ log(1− hθ(xn))

}
is convex in θ.

So we can use convex optimization algorithms to find θ.
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Convex Optimization for Logistic Regression

We can use CVX to solve the logistic regression problem

But it requires some re-organization of the equations

J(θ) =
N∑

n=1

−
{
ynθ

Txn + log(1− hθ(xn))
}

=
N∑

n=1

−
{
ynθ

Txn + log

(
1− eθ

T
xn

1 + eθ
T
xn

)}
=

N∑
n=1

−
{
ynθ

Txn − log
(

1 + eθ
T
xn

)}

= −


(

N∑
n=1

ynxn

)T

θ −
N∑

n=1

log
(

1 + eθ
T
xn

) .

The last term is a sum of log-sum-exp: log(e0 + eθ
T x).
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Convex Optimization for Logistic Regression
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Reading List

Logistic Regression (Machine Learning Perspective)

Chris Bishop’s Pattern Recognition, Chapter 4.3

Hastie-Tibshirani-Friedman’s Elements of Statistical Learning,
Chapter 4.4

Stanford CS 229 Discriminant Algorithms
http://cs229.stanford.edu/notes/cs229-notes1.pdf

CMU Lecture https:

//www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf

Stanford Language Processing
https://web.stanford.edu/~jurafsky/slp3/ (Lecture 5)

Logistic Regression (Statistics Perspective)

Duke Lecture https://www2.stat.duke.edu/courses/Spring13/

sta102.001/Lec/Lec20.pdf

Princeton Lecture
https://data.princeton.edu/wws509/notes/c3.pdf

http://cs229.stanford.edu/notes/cs229-notes1.pdf
https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf
https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf
https://web.stanford.edu/~jurafsky/slp3/
https://www2.stat.duke.edu/courses/Spring13/sta102.001/Lec/Lec20.pdf
https://www2.stat.duke.edu/courses/Spring13/sta102.001/Lec/Lec20.pdf
https://data.princeton.edu/wws509/notes/c3.pdf



