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Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier
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Outline

Discriminative Approaches

Lecture 14 Logistic Regression 1

Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 2

Gradient Descent

Convexity
Gradient
Regularization

Connection with Bayes

Derivation
Interpretation

Comparison with Linear Regression

Is logistic regression better than linear?
Case studies
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From Linear to Logistic Regression

Can we replace g(x) by sign(g(x))?

How about a soft-version of sign(g(x))?

This gives a logistic regression.
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Logistic Regression and Deep Learning

Logistic regression can be considered as the last layer of a deep
network

Inputs are xn, weights are w
The sigmoid function is the nonlinear activation

To train the model, you compare the prediction error and minimize
the loss by updating the weights



c©Stanley Chan 2020. All Rights Reserved.

Training Loss Function

J(θ) =
N∑

n=1

L(hθ(xn), yn)

=
N∑

n=1

−
{
yn log hθ(xn) + (1− yn) log(1− hθ(xn))

}

This is called the cross-entropy loss

Consider two cases

yn log hθ(xn) =

{
0, if yn = 1, and hθ(xn) = 1,

−∞, if yn = 1, and hθ(xn) = 0,

(1− yn)(1− log hθ(xn)) =

{
0, if yn = 0, and hθ(xn) = 0,

−∞, if yn = 0, and hθ(xn) = 1.

No solution if mismatch
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Convexity of Logistic Training Loss

Recall that

J(θ) =
n∑

n=1

−
{
yn log

(
hθ(xn)

1− hθ(xn)

)
+ log(1− hθ(xn))

}
The first term is linear, so it is convex.
The second term: Gradient:

∇θ[− log(1− hθ(x))] = −∇θ

[
log

(
1− 1

1 + e−θ
T x

)]
= −∇θ

[
log

e−θ
T x

1 + e−θ
T x

]
= −∇θ

[
log e−θ

T x − log(1 + e−θ
T x)
]

= −∇θ

[
−θTx − log(1 + e−θ

T x)
]

= x +∇θ

[
log
(

1 + e−θ
T x
)]

= x +

(
−e−θT x

1 + e−θ
T x

)
x = hθ(x)x .
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Convexity of Logistic Training Loss

Gradient of second term is

∇θ[− log(1− hθ(x))] = hθ(x)x .

Hessian is:

∇2
θ[− log(1− hθ(x))] = ∇θ [hθ(x)x ]

= ∇θ

[(
1

1 + e−θ
T x

)
x
]

=

(
1

(1 + e−θ
T x)2

)(
−e−θ

T x
)

xxT

=

(
1

1 + e−θ
T x

)(
1− 1

1 + e−θ
T x

)
xxT

= hθ(x)[1− hθ(x)]xxT .
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Convexity of Logistic Training Loss

For any v ∈ Rd , we have that

vT∇2
θ[− log(1− hθ(x))]v = vT

[
hθ(x)[1− hθ(x)]xxT

]
v

= (hθ(x)[1− hθ(x)]) ‖vTx‖2 ≥ 0.

Therefore the Hessian is positive semi-definite.

So − log(1− hθ(x) is convex in θ.

Conclusion: The training loss function

J(θ) =
n∑

n=1

−
{
yn log

(
hθ(xn)

1− hθ(xn)

)
+ log(1− hθ(xn))

}
is convex in θ.

So we can use convex optimization algorithms to find θ.
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Convex Optimization for Logistic Regression

We can use CVX to solve the logistic regression problem

But it requires some re-organization of the equations

J(θ) =
N∑

n=1

−
{
ynθ

Txn + log(1− hθ(xn))
}

=
N∑

n=1

−
{
ynθ

Txn + log

(
1− eθ

T xn

1 + eθ
T xn

)}
=

N∑
n=1

−
{
ynθ

Txn − log
(

1 + eθ
T xn

)}

= −


(

N∑
n=1

ynxn

)T

θ −
N∑

n=1

log
(

1 + eθ
T xn

) .

The last term is a sum of log-sum-exp: log(e0 + eθ
T x).
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Convex Optimization for Logistic Regression
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Black: The true model. You create it.

Blue circles: Samples drawn from the true distribution.

Red: Trained model from the samples.
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Gradient Descent for Logistic Regression

The training loss function is

J(θ) =
n∑

n=1

−
{
ynθ

Txn + log(1− hθ(xn))
}
.

Recall that
∇θ[− log(1− hθ(x))] = hθ(x)x .

You can run gradient descent

θ(k+1) = θ(k) − αk∇θJ(θ(k))

= θ(k) − αk

(
N∑

n=1

(hθ(k)(xn)− yn)xn

)
.

Since the loss function is convex, guaranteed to find global minimum.
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Regularization in Logistic Regression

The loss function is

J(θ) =
n∑

n=1

−
{
ynθ

Txn + log(1− hθ(xn))
}

=
n∑

n=1

−
{
ynθ

Txn + log

(
1− 1

1 + e−θ
T xn

)}
What if hθ(xn) = 1? (We need θTxn =∞.)

Then we have log(1− 1) = log 0, which is −∞.

Same thing happens in the equivalent form

J(θ) = −


(

N∑
n=1

ynxn

)T

θ −
N∑

n=1

log
(

1 + eθ
T xn

) .

When θTxn →∞, we have log(∞).
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Regularization in Logistic Regression

Example: Two classes: N (0, 1) and N (10, 1).

Run CVX
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Regularization in Logistic Regression

Add a small regularization

J(θ) = −


(

N∑
n=1

ynxn

)T

θ −
N∑

n=1

log
(

1 + eθ
T xn

)+ λ‖θ‖2.

Re-run the same CVX program
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Regularization in Logistic Regression

If you make λ really really small ...

J(θ) = −


(

N∑
n=1

ynxn

)T

θ −
N∑

n=1

log
(

1 + eθ
T xn

)+ λ‖θ‖2.

Re-run the same CVX program
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Try This Online Exercise

Classify two digits in the MNIST dataset

http://ufldl.stanford.edu/tutorial/supervised/

LogisticRegression/

http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/
http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/



