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This lecture: Logistic Regression 2
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Connection with Bayes

The likelihood is

p(x |i) =
1√

(2π)d |Σ|
exp

{
−1

2
(x − µi )

TΣ−1(x − µi )

}
The prior is pY (i) = πi .

The posterior is

p(1|x) =
p(x |1)pY (1)

p(x |1)pY (1) + p(x |0)pY (0)

=
1

1 + p(x |0)pY (0)
p(x |1)pY (1)

=
1

1 + exp
{
− log

(
p(x |1)pY (1)
p(x |0)pY (0)

)}
=

1

1 + exp
{
− log

(
π1
π0

)
− log

(
p(x |1)
p(x |0)

)} .
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Connection with Bayes

We can show that the last term is

log

(
p(x |1)

p(x |0)

)

= log

 1√
(2π)d |Σ|

exp
{
−1

2(x − µ1)TΣ−1(x − µ1)
}

1√
(2π)d |Σ|

exp
{
−1

2(x − µ0)TΣ−1(x − µ0)
}


= −1

2

[
(x − µ1)TΣ−1(x − µ1)− (x − µ0)TΣ−1(x − µ0)

]
= (µ1 − µ0)TΣ−1x − 1

2

(
µT
1 Σ−1µ1 − µT

0 Σ−1µ0

)
.

Let us define

w = Σ−1(µ1 − µ0)

w0 = −1

2

(
µT
1 Σ−1µ1 − µT

0 Σ−1µ0

)
+ log

(
π1
π0

)
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Connection with Bayes

Then,

log

(
p(x |1)

p(x |0)

)
= (µ1 − µ0)TΣ−1x − 1

2

(
µT
1 Σ−1µ1 − µT

0 Σ−1µ0

)
= wTx + w0 − log π1/π0

Therefore,

p(1|x) =
1

1 + exp
{
− log

(
π1
π0

)
− log

(
p(x |1)
p(x |0)

)}
=

1

1 + exp{−(wTx + w0)}
= hθ(x)
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Connection with Bayes

The hypothesis function is the posterior distribution

pY |X (1|x) =
1

1 + exp{−(wTx + w0)}
= hθ(x)

pY |X (0|x) =
exp{−(wTx + w0)

1 + exp{−(wTx + w0)}
= 1− hθ(x),

(1)

So logistic regression offers probabilistic reasoning which linear
regression does not

Not true when the covariances are different

Remark: If the covariances are different, the Bayes returns a
quadratic classifier




