ECE595 / STAT598: Machine Learning I Lecture 19.1: Support Vector Machine Concept of Margin

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University
Purdue

Outline

Support Vector Machine

- Lecture 19 SVM 1: The Concept of Max-Margin
- Lecture 20 SVM 2: Dual SVM
- Lecture 21 SVM 3: Kernel SVM

This lecture: Support Vector Machine 1

- Concept of Margin
- Distance from point to plane
- Margin
- Max Margin Classifier
- SVM
- SVM via Optimization
- Programming SVM
- Visualization

Margin and Max-Margin Classifier

- Margin: Smallest gap between the two classes
- Max-Margin Classifier: A classifier that maximizes the margin
- What do we need?
- How to measure the distance from a point to a plane?
- How to formulate a max margin problem?
- How to solve the max margin problem?

Recall: Linear Discriminant Function

- In high-dimension,

$$
g(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0} .
$$

is a hyperplane.

- Separating Hyperplane:

$$
\begin{aligned}
\mathcal{H} & =\{\boldsymbol{x} \mid g(\boldsymbol{x})=0\} \\
& =\left\{\boldsymbol{x} \mid \boldsymbol{w}^{\top} \boldsymbol{x}+w_{0}=0\right\}
\end{aligned}
$$

- $\boldsymbol{x} \in \mathcal{H}$ means \boldsymbol{x} is on the decision boundary.
- $\boldsymbol{w} /\|\boldsymbol{w}\|_{2}$ is the normal vector of \mathcal{H}.

Recall: Distance from x_{0} to $g(x)=0$

- Pick a point \boldsymbol{x}_{p} on \mathcal{H}
- x_{p} is the closest point to x_{0}
- $x_{0}-x_{p}$ is the normal direction
- So, for some scalar $\eta>0$,

$$
\boldsymbol{x}_{0}-\boldsymbol{x}_{p}=\eta \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}
$$

- x_{p} is on \mathcal{H}. So

$$
g\left(\boldsymbol{x}_{p}\right)=\boldsymbol{w}^{T} \boldsymbol{x}_{p}+w_{0}=0
$$

Therefore, we can show that

$$
\begin{aligned}
g\left(\boldsymbol{x}_{0}\right) & =\boldsymbol{w}^{T} \boldsymbol{x}_{0}+w_{0} \\
& =\boldsymbol{w}^{T}\left(\boldsymbol{x}_{p}+\eta \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}\right)+w_{0} \\
& =g\left(\boldsymbol{x}_{p}\right)+\eta\|\boldsymbol{w}\|_{2}=\eta\|\boldsymbol{w}\|_{2} .
\end{aligned}
$$

Recall: Distance from x_{0} to $g(x)=0$

- So distance is

$$
\eta=\frac{g\left(\boldsymbol{x}_{0}\right)}{\|\boldsymbol{w}\|_{2}}
$$

- The closest point \boldsymbol{x}_{p} is

$$
\begin{aligned}
\boldsymbol{x}_{p} & =\boldsymbol{x}_{0}-\eta \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}} \\
& =\boldsymbol{x}_{0}-\frac{g\left(x_{0}\right)}{\|\boldsymbol{w}\|_{2}} \cdot \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}} .
\end{aligned}
$$

Conclusion:

$$
\boldsymbol{x}_{p}=\boldsymbol{x}_{0} \quad-\quad \underbrace{\frac{g\left(\boldsymbol{x}_{0}\right)}{\|\boldsymbol{w}\|_{2}}}_{\text {distance }} \cdot \underbrace{\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}}_{\text {normal vector }}
$$

Unsigned Distance

- We define the distance between a data point \boldsymbol{x}_{j} and a separating hyperplane as

$$
d\left(\boldsymbol{x}_{j}, \mathcal{H}\right)=\frac{\left|g\left(\boldsymbol{x}_{j}\right)\right|}{\|\boldsymbol{w}\|_{2}}=\frac{\left|\boldsymbol{w}^{\top} \boldsymbol{x}_{j}+w_{0}\right|}{\|\boldsymbol{w}\|_{2}}
$$

- $d\left(\boldsymbol{x}_{j}, \mathcal{H}\right)$ is called unsigned distance

Margin

- Among all the unsigned distances, pick the smallest one.
- Margin: γ such that

$$
\gamma=\min _{j=1, \ldots, N} d\left(\boldsymbol{x}_{j}, \mathcal{H}\right)
$$

- Without loss of generality, assume \boldsymbol{x}_{N} is the closest point.

More about Margin

- Margin: γ such that

$$
\gamma=\min _{j=1, \ldots, N} d\left(\boldsymbol{x}_{j}, \mathcal{H}\right)
$$

- γ depends on (\boldsymbol{w}, w_{0}).
- γ always exist because training set is finite.
- $\gamma \geq 0$, and is zero when \boldsymbol{x}_{N} is on the boundary.

Signed Distance

- $d\left(\boldsymbol{x}_{j}, \mathcal{H}\right)$ is unsigned
- So γ does not tell whether a point \boldsymbol{x}_{j} is correctly classified or not
- Assume that the labels are defined as $y_{j} \in\{-1,+1\}$
- Then define a signed distance

$$
\begin{aligned}
d_{\text {signed }}\left(\boldsymbol{x}_{j}, \mathcal{H}\right) & =y_{j}\left(\frac{\boldsymbol{w}^{\top} \boldsymbol{x}_{j}+w_{0}}{\|\boldsymbol{w}\|_{2}}\right) \\
& = \begin{cases}\geq 0, & \text { correctly classify } \boldsymbol{x}_{j} \\
<0, & \text { incorrectly classify } \boldsymbol{x}_{j}\end{cases}
\end{aligned}
$$

- Recall perceptron loss:

$$
\mathcal{L}\left(\boldsymbol{x}_{j}\right)=\max \left\{-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right), 0\right\}
$$

Unsigned VS Signed Distance

- Unsigned distance: Just the distance
- Signed distance: Distance plus whether on the correct side

Max-Margin Objective

- Assumptions: Linearly separable.
- This means

$$
y_{j}\left(\frac{\boldsymbol{w}^{\top} \boldsymbol{x}_{j}+w_{0}}{\|\boldsymbol{w}\|_{2}}\right) \geq \gamma, \quad j=1, \ldots, N
$$

- All training samples are correctly classified.
- All training samples are at lest γ from the boundary.
- So the max-margin classifier is

$$
\begin{aligned}
& \underset{\boldsymbol{w}, w_{0}}{\operatorname{maximize}} \gamma \\
& \text { subject to } y_{j}\left(\frac{\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}}{\|\boldsymbol{w}\|_{2}}\right) \geq \gamma, \quad j=1, \ldots, N
\end{aligned}
$$

Good or Bad?

Good or Bad?

Good or Bad?

