ECE595 / STAT598: Machine Learning I
 Lecture 20.1: Support Vector Machine Lagrange Duality

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PURDUE

Outline

Support Vector Machine

- Lecture 19 SVM 1: The Concept of Max-Margin
- Lecture 20 SVM 2: Dual SVM
- Lecture 21 SVM 3: Kernel SVM

This lecture: Support Vector Machine: Duality

- Lagrange Duality
- Maximize the dual variable
- Minimax Problem
- Toy Example
- Dual SVM
- Formulation
- Interpretation

Support Vector Machine

SVM is the solution of this optimization

$$
\begin{aligned}
\operatorname{minimize}_{\boldsymbol{w}, w_{0}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to } & y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \geq 1, \quad j=1, \ldots, N .
\end{aligned}
$$

Lagrange Function

- Goal: Construct the dual problem of

$$
\begin{aligned}
\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to } & y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \geq 1, \quad j=1, \ldots, N .
\end{aligned}
$$

- Approach: Consider the Lagrangian function

$$
\mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right) \stackrel{\text { def }}{=} \underbrace{\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}}_{\text {objective }}+\sum_{j=1}^{N} \lambda_{j} \underbrace{\left[1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right)\right]}_{\text {constraint }},
$$

- Solution happens at the saddle point of \mathcal{L} :

$$
\nabla_{\left(\boldsymbol{w}, w_{0}\right)} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\mathbf{0}, \quad \text { and } \quad \nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\mathbf{0}
$$

Appendix

Inequality Constrained Optimization

Inequality constrained optimization:

$$
\begin{array}{rll}
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(\boldsymbol{x}) & \\
\text { subject to } & g_{i}(\boldsymbol{x}) \geq 0, & i=1, \ldots, m \\
& h_{j}(\boldsymbol{x})=0, & j=1, \ldots, k .
\end{array}
$$

Requires a function: Lagrangian function

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} f(\boldsymbol{x})-\sum_{i=1}^{m} \mu_{i} g_{i}(\boldsymbol{x})-\sum_{j=1}^{k} \nu_{j} h_{j}(\boldsymbol{x})
$$

$\boldsymbol{\mu} \in \mathbb{R}^{m}$ and $\boldsymbol{\nu} \in \mathbb{R}^{k}$ are called the Lagrange multipliers or the dual variables.

Karush-Kahn-Tucker Conditions

If $\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}, \boldsymbol{\nu}^{*}\right)$ is the solution to the constrained optimization, then all the following conditions should hold:
(i) $\nabla_{\boldsymbol{x}} \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}, \boldsymbol{\nu}^{*}\right)=\mathbf{0}$.

- Stationarity.
- The primal variables should be stationary.
(ii) $g_{i}\left(x^{*}\right) \geq 0$ and $h_{j}\left(x^{*}\right)=0$ for all i and j.
- Primal Feasibility.
- Ensures that constraints are satisfied.
(iii) $\mu_{i}^{*} \geq 0$ for all i and j.
- Dual Feasibility.
- Require $\mu_{i}^{*} \geq 0$; but no constraint on ν_{i}^{*}.
(iv) $\mu_{i}^{*} g_{i}\left(\boldsymbol{x}^{*}\right)=0$ for all i and j.
- Complementary Slackness
- Either $\mu_{i}^{*}=0$ or $g_{i}\left(\boldsymbol{x}^{*}\right)=0$ (or both).

KKT Condition is a first order necessary condition.

Example: ℓ_{2}-minimization with two constraints

Solve the following least squares over positive quadrant problem.

$$
\begin{align*}
& \underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{b}\|^{2}, \tag{1}\\
& \text { subject to } \boldsymbol{x}^{T} \mathbf{1}=1, \quad \text { and } \quad \boldsymbol{x} \geq \mathbf{0}
\end{align*}
$$

```
%MATLAB code: Use CVX to solve min ||x-b|| s.t. sum(x) = 1, x >= 0.
cvx_begin
    variable x(n)
    minimize( norm(x-b, 2) )
    subject to
        sum(x) == 1;
        x >= 0;
cvx_end
```


Analytic Solution

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \gamma)=\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}-\boldsymbol{\lambda}^{T} \boldsymbol{x}-\gamma\left(1-\boldsymbol{x}^{\top} \mathbf{1}\right)
$$

Stationarity suggests that:

$$
\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \gamma)=\boldsymbol{x}-\boldsymbol{b}-\boldsymbol{\lambda}+\gamma \mathbf{1}=\mathbf{0}
$$

This means

$$
\boldsymbol{x}=\boldsymbol{b}+\boldsymbol{\lambda}-\gamma \mathbf{1} \quad \text { or } \quad x_{i}=b_{i}+\lambda_{i}-\gamma .
$$

The complementary slackness implies $\lambda_{i} x_{i}=0$.

- Case 1: If $\lambda_{i}=0$, then
- $x_{i}=b_{i}+X_{i}^{0}-\gamma=b_{i}-\gamma$.
- Since constraint requires $x_{i} \geq 0$, this means $b_{i} \geq \gamma$.
- Case 2: If $\lambda_{i}>0$, then $x_{i}=0$.
- $x_{i}^{+0}=b_{i}+\lambda_{i}-\gamma$.
- This implies $b_{i}+\lambda_{i}=\gamma$.
- Since $\lambda_{i}>0$, this implies $b_{i}<\gamma$.

These three cases can be re-written as:

- If $b_{i}>\gamma$, then $x_{i}=b_{i}-\gamma$;
- If $b_{i}=\gamma$, then $x_{i}=0$;
- If $b_{i}<\gamma$, then $x_{i}=0$.

Compactly written as

$$
\boldsymbol{x}=\max (\boldsymbol{b}-\gamma \mathbf{1}, 0)
$$

Primal feasibility implies that

$$
\boldsymbol{x}^{T} \mathbf{1}=1, \quad \Leftrightarrow \quad \sum_{i=1}^{n} x_{i}=1
$$

Therefore, γ needs to satisfy the equation

$$
\sum_{i=1}^{n} \max \left(b_{i}-\gamma, 0\right)=1
$$

which can be found by doing a root-finding of

$$
g(\gamma)=\sum_{i=1}^{n} \max \left(b_{i}-\gamma, 0\right)-1
$$

Non-CVX Implementation

```
%MATLAB code: solve min ||x-b|| s.t. sum(x) = 1, x >= 0.
n = 10;
b = randn(n,1);
fun = @(gamma) myfun(gamma,b);
gamma = fzero(fun,0);
x = max(b-gamma,0);
```

where the function myfun is defined as

```
function y = myfun(gamma,b)
y = sum(max(b-gamma,0))-1;
```


Lagrangian function

- The Lagrangian function is

$$
\mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right) \stackrel{\text { def }}{=} \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}+\sum_{j=1}^{N} \lambda_{j} \underbrace{\left[1-y_{j}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{j}+w_{0}\right)\right]}_{\leq 0}
$$

- Complementarity Condition says
- $\lambda_{j}>0$ and $\left[1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right)\right]=0$
- $\lambda_{j}=0$ and $\left[1-y_{j}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{j}+w_{0}\right)\right]<0$
- So, if we want $\nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\mathbf{0}$, then must be one of the two cases:

$$
\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right)\right] \rightarrow \max \quad \text { or } \quad \min
$$

- No saddle point because linear in λ.
- But $1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \leq 0$. So unbounded minimum. So must go with maximum.

Primal Problem

- Let $\boldsymbol{\lambda}^{*}$ as the maximizer

$$
\boldsymbol{\lambda}^{*} \stackrel{\text { def }}{=} \underset{\boldsymbol{\lambda} \geq \mathbf{0}}{\operatorname{argmax}}\left\{\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{j}+w_{0}\right)\right]\right\}
$$

- Then the primal problem is

$$
\begin{aligned}
& \underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}^{*}\right) \\
& =\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}}\left\{\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}+\max _{\boldsymbol{\lambda} \geq 0}\left\{\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{j}+w_{0}\right)\right]\right\}\right\} \\
& =\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}}\left\{\max _{\boldsymbol{\lambda} \geq 0} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)\right\}
\end{aligned}
$$

- This is a min-max problem:

$$
\min _{\boldsymbol{w}, w_{0}} \max _{\boldsymbol{\lambda} \geq 0} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)
$$

Strong Duality

- Recall that our problem is quadratic programming (QP).
- Strong Duality holds for QP:

strong duality

weak duality

Toy Example

- The SVM problem

$$
\begin{aligned}
\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to } & y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \geq 1, \quad j=1, \ldots, N .
\end{aligned}
$$

is in the form of
$\underset{\boldsymbol{u}}{\operatorname{minimize}}\|\boldsymbol{u}\|^{2}, \quad$ subject to $\quad \boldsymbol{a}_{j}^{T} \boldsymbol{u} \geq b_{j}, j=1,2, \ldots, N$

- Example:

$$
\underset{u_{1}, u_{2}}{\operatorname{minimize}} u_{1}^{2}+u_{2}^{2}, \quad \text { subject to } \quad\left[\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \geq\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

- Can we write down its dual problem?

Toy Example

- Lagrangian function is

$$
\mathcal{L}(\boldsymbol{u}, \boldsymbol{\lambda}) \stackrel{\text { def }}{=} u_{1}^{2}+u_{2}^{2}+\lambda_{1}\left(2-u_{1}-2 u_{2}\right)-\lambda_{2} u_{1}-\lambda_{3} u_{3}
$$

- Minimize over \boldsymbol{u} :

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial u_{1}}=0 \Rightarrow u_{1}=\frac{\lambda_{1}+\lambda_{2}}{2} \\
& \frac{\partial \mathcal{L}}{\partial u_{2}}=0 \Rightarrow u_{2}=\frac{2 \lambda_{1}+\lambda_{3}}{2}
\end{aligned}
$$

- Plugging into the Lagrangian function yields

$$
\begin{aligned}
& \underset{\lambda}{\operatorname{maximize}} \mathcal{L}(\boldsymbol{\lambda})=-\frac{5}{4} \lambda_{1}^{2}-\frac{1}{4} \lambda_{2}^{2}-\frac{1}{4} \lambda_{3}^{2}-\frac{1}{2} \lambda_{1} \lambda_{2}-\lambda_{1} \lambda_{3}+2 \lambda_{1} \\
& \text { subject to } \quad \lambda \geq 0
\end{aligned}
$$

- Primal is QP. Dual is also QP.

Have We Gained Anything?

- Here is the dual problem:

$$
\begin{aligned}
& \underset{\boldsymbol{\lambda}}{\operatorname{maximize}} \\
& \text { subject to } \quad \boldsymbol{\lambda}(\boldsymbol{\lambda})=-\frac{5}{4} \lambda_{1}^{2}-\frac{1}{4} \lambda_{2}^{2}-\frac{1}{4} \lambda_{3}^{2}-\frac{1}{2} \lambda_{1} \lambda_{2}-\lambda_{1} \lambda_{3}+2 \lambda_{1} \\
& \text { s. }
\end{aligned}
$$

- These terms are all negative! So we must have $\lambda_{2}=\lambda_{3}=0$.
- This gives

$$
\underset{\lambda_{1} \geq 0}{\operatorname{maximize}}-\frac{5}{4} \lambda_{1}^{2}+2 \lambda_{1} .
$$

which is maximized at $\lambda_{1}=\frac{4}{5}$.

- Plugging into the primal yields

$$
u_{1}=\frac{\lambda_{1}+\lambda_{2}}{2}=\frac{2}{5}, \quad \text { and } \quad u_{2}=\frac{2 \lambda_{1}+\lambda_{3}}{2}=\frac{4}{5}
$$

