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Outline

Support Vector Machine

Lecture 19 SVM 1: The Concept of Max-Margin

Lecture 20 SVM 2: Dual SVM

Lecture 21 SVM 3: Kernel SVM

This lecture: Support Vector Machine: Duality

Lagrange Duality

Maximize the dual variable
Minimax Problem
Toy Example

Dual SVM

Formulation
Interpretation
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Dual of SVM

We want to find the dual problem of

minimize
w ,w0

1

2
‖w‖22

subject to yj(w
Tx j + w0) ≥ 1, j = 1, . . . ,N.

We start with the Lagrangian function

L(w ,w0,λ)
def
=

1

2
‖w‖22 +

N∑
j=1

λj

[
1− yj(w

Tx j + w0)
]
.

Let us minimize over (w ,w0):

∇wL(w ,w0,λ) = w −
N∑
j=1

λjyjx j = 0

∇w0L(w ,w0,λ) =
N∑
j=1

λjyj = 0.
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Interpreting ∇wL(w ,w0,λ) = 0

The first result suggests that

w =
N∑
j=1

λjyjx j .

This is support vector: λj is either λj = 0 or λj > 0.
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Interpreting ∇wL(w ,w0,λ) = 0

The complementarity condition states that

λ∗j

[
1− yj(w

∗Tx j + w∗0 )
]

= 0, for j = 1, . . . ,N.

If 1− yj(w
∗Tx j + w∗0 ) > 0, then λ∗j = 0

If λ∗j > 0, then 1− yj(w
∗Tx j + w∗0 ) = 0

So you can define the support vector set:

V def
= {j | λ∗j > 0}.

So the optimal weight is

w∗ =
∑
j∈V

λ∗j yjx j .
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Back to Duality

The Lagrangian function is

L(w∗,w∗0 ,λ) =
1

2
‖w∗‖22 +

N∑
j=1

λj

[
1− yj((w∗)Tx j + w0)

]

=
1

2

∥∥∥∥∥∥
N∑
j=1

λjyjx j

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
A

+
N∑
j=1

λj

1− yj

( n∑
i=1

λiyix i

)T

x j + w0


︸ ︷︷ ︸

B
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Back to Duality

We can show that

A =
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i x j

B =
N∑
j=1

λj −
N∑
i=1

N∑
j=1

λiλjyiyjx
T
i x j −

 N∑
j=1

λjyj


︸ ︷︷ ︸

=0

w0

and we can show that

A + B =
N∑
j=1

λj +
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i x j
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Back to Duality

Therefore, the dual problem is

maximize
λ≥0

− 1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i x j +

N∑
j=1

λj

subject to
N∑
j=1

λjyj = 0.

If you prefer matrix-vector:

maximize
λ≥0

− 1

2
λTQλ + 1Tλ

subject to yTλ = 0.

We can combine the constraints λ ≥ 0 and yTλ = 0 as

Aλ ≥ 0.
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Back to Duality

yTλ = 0 means

yTλ ≥ 0, and yTλ ≤ 0.

Thus, we can write yTλ = 0 as[
yT

−yT

]
λ ≥

[
0
0

]
.

Therefore, the matrices Q and A are

Q =


y1y1x

T
1 x1 . . . y1yNx

T
1 xN

y2y1x
T
2 x1 . . . y2yNx

T
2 xN

...
...

...
yNy1x

T
Nx1 . . . yNyNx

T
NxN

 and A =

 yT

−yT

I
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So How to Solve the SVM Problem?

You look at the dual problem

maximize
λ

− 1

2
λTQλ + 1Tλ

subject to Aλ ≥ 0.

You get the solution λ∗.

Then compute w∗:

w∗ =
∑
j∈V

λ∗j yjx j .

V is the set of support vectors: λj > 0.



c©Stanley Chan 2020. All Rights Reserved.

Are We Done Yet?

Not quite.

We still need to find out w∗0 .

Pick any support vector x+ ∈ C+ and x− ∈ C−.

Then we have

wTx+ + w0 = +1, and wTx− + w0 = −1.

Sum them, we have wT (x+ + x−) + 2w0 = 0, which means

w∗0 = −(x+ + x−)Tw∗

2
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Summary of Dual SVM

Primal

minimize
w ,w0

1

2
‖w‖22

subject to yj(w
Tx j + w0) ≥ 1, j = 1, . . . ,N.

Strong Duality

min
w ,w0

max
λ≥0

L(w ,w0,λ)︸ ︷︷ ︸
primal

= max
λ≥0

min
w ,w0

L(w ,w0,λ)︸ ︷︷ ︸
dual

Dual

maximize
λ≥0

− 1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i x j +

N∑
j=1

λj

subject to
N∑
j=1

λjyj = 0.
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Summary of Dual SVM

The weights are computed as

w∗ =
N∑
j=1

λ∗j yjx j .

This is support vector: λj is either λj = 0 or λj > 0.

Pick any support vector x+ ∈ C+ and x− ∈ C−.

Then we have

wTx+ + w0 = +1, and wTx− + w0 = −1.

Sum them, we have wT (x+ + x−) + 2w0 = 0, which means

w∗0 = −(x+ + x−)Tw∗

2
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Summary of Dual SVM
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Reading List

Support Vector Machine

Mustafa, Learning from Data, e-Chapter

Duda-Hart-Stork, Pattern Classification, Chapter 5.5

Chris Bishop, Pattern Recognition, Chapter 7.1

UCSD Statistical Learning
http://www.svcl.ucsd.edu/courses/ece271B-F09/

http://www.svcl.ucsd.edu/courses/ece271B-F09/



