ECE595 / STAT598: Machine Learning I Lecture 20.2: Support Vector Machine - Dual SVM

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University
Purdue

Outline

Support Vector Machine

- Lecture 19 SVM 1: The Concept of Max-Margin
- Lecture 20 SVM 2: Dual SVM
- Lecture 21 SVM 3: Kernel SVM

This lecture: Support Vector Machine: Duality

- Lagrange Duality
- Maximize the dual variable
- Minimax Problem
- Toy Example
- Dual SVM
- Formulation
- Interpretation

Dual of SVM

- We want to find the dual problem of

$$
\begin{aligned}
\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to } & y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \geq 1, \quad j=1, \ldots, N .
\end{aligned}
$$

- We start with the Lagrangian function

$$
\mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right) \stackrel{\text { def }}{=} \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}+\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right)\right]
$$

- Let us minimize over (\boldsymbol{w}, w_{0}):

$$
\begin{aligned}
& \nabla_{\boldsymbol{w}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\boldsymbol{w}-\sum_{j=1}^{N} \lambda_{j} y_{j} \boldsymbol{x}_{j}=\mathbf{0} \\
& \nabla_{w_{0}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\sum_{j=1}^{N} \lambda_{j} y_{j}=0
\end{aligned}
$$

Interpreting $\nabla_{\boldsymbol{w}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=0$

- The first result suggests that

$$
\boldsymbol{w}=\sum_{j=1}^{N} \lambda_{j} y_{j} \boldsymbol{x}_{j}
$$

- This is support vector: λ_{j} is either $\lambda_{j}=0$ or $\lambda_{j}>0$.

Interpreting $\nabla_{\boldsymbol{w}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=0$

- The complementarity condition states that

$$
\lambda_{j}^{*}\left[1-y_{j}\left(\boldsymbol{w}^{* T} \boldsymbol{x}_{j}+w_{0}^{*}\right)\right]=0, \quad \text { for } \quad j=1, \ldots, N .
$$

- If $1-y_{j}\left(\boldsymbol{w}^{* T} \boldsymbol{x}_{j}+w_{0}^{*}\right)>0$, then $\lambda_{j}^{*}=0$
- If $\lambda_{j}^{*}>0$, then $1-y_{j}\left(\boldsymbol{w}^{* T} \boldsymbol{x}_{j}+w_{0}^{*}\right)=0$
- So you can define the support vector set:

$$
\mathcal{V} \stackrel{\text { def }}{=}\left\{j \mid \lambda_{j}^{*}>0\right\}
$$

- So the optimal weight is

$$
\boldsymbol{w}^{*}=\sum_{j \in \mathcal{V}} \lambda_{j}^{*} y_{j} \boldsymbol{x}_{j}
$$

Back to Duality

The Lagrangian function is

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{w}^{*}, w_{0}^{*}, \boldsymbol{\lambda}\right)= & \frac{1}{2}\left\|\boldsymbol{w}^{*}\right\|_{2}^{2}+\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\left(\boldsymbol{w}^{*}\right)^{T} \boldsymbol{x}_{j}+w_{0}\right)\right] \\
= & \underbrace{\frac{1}{2}\left\|\sum_{j=1}^{N} \lambda_{j} y_{j} \boldsymbol{x}_{j}\right\|_{2}^{2}}_{A} \\
& +\underbrace{\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\left(\sum_{i=1}^{n} \lambda_{i} y_{i} \boldsymbol{x}_{i}\right)^{T} \boldsymbol{x}_{j}+w_{0}\right)\right]}_{B=1}
\end{aligned}
$$

Back to Duality

- We can show that

$$
\begin{aligned}
& A=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j} \\
& B=\sum_{j=1}^{N} \lambda_{j}-\sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}-\underbrace{\left(\sum_{j=1}^{N} \lambda_{j} y_{j}\right)}_{=0} w_{0}
\end{aligned}
$$

- and we can show that

$$
A+B=\sum_{j=1}^{N} \lambda_{j}+\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}
$$

Back to Duality

- Therefore, the dual problem is

$$
\begin{aligned}
& \underset{\lambda \geq 0}{\operatorname{maximize}}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}+\sum_{j=1}^{N} \lambda_{j} \\
& \text { subject to } \sum_{j=1}^{N} \lambda_{j} y_{j}=0
\end{aligned}
$$

- If you prefer matrix-vector:

$$
\begin{aligned}
& \underset{\boldsymbol{\lambda} \geq 0}{\operatorname{maximize}}-\frac{1}{2} \boldsymbol{\lambda}^{T} \boldsymbol{Q} \boldsymbol{\lambda}+\mathbf{1}^{T} \boldsymbol{\lambda} \\
& \text { subject to } \boldsymbol{y}^{T} \boldsymbol{\lambda}=\mathbf{0} .
\end{aligned}
$$

- We can combine the constraints $\boldsymbol{\lambda} \geq 0$ and $\boldsymbol{y}^{\top} \boldsymbol{\lambda}=\mathbf{0}$ as

$$
\boldsymbol{A} \boldsymbol{\lambda} \geq \mathbf{0}
$$

Back to Duality

- $\boldsymbol{y}^{\top} \boldsymbol{\lambda}=0$ means

$$
\boldsymbol{y}^{T} \boldsymbol{\lambda} \geq 0, \quad \text { and } \quad \boldsymbol{y}^{T} \boldsymbol{\lambda} \leq 0
$$

- Thus, we can write $\boldsymbol{y}^{\top} \boldsymbol{\lambda}=0$ as

$$
\left[\begin{array}{c}
\boldsymbol{y}^{T} \\
-\boldsymbol{y}^{T}
\end{array}\right] \boldsymbol{\lambda} \geq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- Therefore, the matrices \boldsymbol{Q} and \boldsymbol{A} are

$$
\boldsymbol{Q}=\left[\begin{array}{ccc}
y_{1} y_{1} \boldsymbol{x}_{1}^{T} \boldsymbol{x}_{1} & \ldots & y_{1} y_{N} \boldsymbol{x}_{1}^{T} \boldsymbol{x}_{N} \\
y_{2} y_{1} \boldsymbol{x}_{2}^{T} \boldsymbol{x}_{1} & \ldots & y_{2} y_{N} \boldsymbol{x}_{2}^{T} \boldsymbol{x}_{N} \\
\vdots & \vdots & \vdots \\
y_{N} y_{1} \boldsymbol{x}_{N}^{T} \boldsymbol{x}_{1} & \ldots & y_{N} y_{N} \boldsymbol{x}_{N}^{T} \boldsymbol{x}_{N}
\end{array}\right] \quad \text { and } \quad \boldsymbol{A}=\left[\begin{array}{c}
\boldsymbol{y}^{T} \\
-\boldsymbol{y}^{T} \\
\boldsymbol{l}
\end{array}\right]
$$

So How to Solve the SVM Problem?

- You look at the dual problem

$$
\begin{aligned}
& \underset{\boldsymbol{\lambda}}{\operatorname{maximize}}-\frac{1}{2} \boldsymbol{\lambda}^{T} \boldsymbol{Q} \boldsymbol{\lambda}+\mathbf{1}^{T} \boldsymbol{\lambda} \\
& \text { subject to } \boldsymbol{A} \boldsymbol{\lambda} \geq \mathbf{0}
\end{aligned}
$$

- You get the solution $\boldsymbol{\lambda}^{*}$.
- Then compute \boldsymbol{w}^{*} :

$$
\boldsymbol{w}^{*}=\sum_{j \in \mathcal{V}} \lambda_{j}^{*} y_{j} \boldsymbol{x}_{j} .
$$

- \mathcal{V} is the set of support vectors: $\lambda_{j}>0$.

Are We Done Yet?

- Not quite.
- We still need to find out w_{0}^{*}.
- Pick any support vector $\boldsymbol{x}^{+} \in \mathcal{C}_{+}$and $\boldsymbol{x}^{-} \in \mathcal{C}_{-}$.
- Then we have

$$
\boldsymbol{w}^{T} \boldsymbol{x}^{+}+w_{0}=+1, \quad \text { and } \quad \boldsymbol{w}^{T} \boldsymbol{x}^{-}+w_{0}=-1
$$

- Sum them, we have $\boldsymbol{w}^{T}\left(\boldsymbol{x}^{+}+\boldsymbol{x}^{-}\right)+2 w_{0}=0$, which means

$$
w_{0}^{*}=-\frac{\left(\boldsymbol{x}^{+}+\boldsymbol{x}^{-}\right)^{T} \boldsymbol{w}^{*}}{2}
$$

Summary of Dual SVM

- Primal

$$
\begin{aligned}
\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to } & y_{j}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{j}+w_{0}\right) \geq 1, \quad j=1, \ldots, N .
\end{aligned}
$$

- Strong Duality

- Dual

$$
\begin{aligned}
& \underset{\lambda \geq 0}{\operatorname{maximize}}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}+\sum_{j=1}^{N} \lambda_{j} \\
& \text { subject to } \sum_{j=1}^{N} \lambda_{j} y_{j}=0 .
\end{aligned}
$$

Summary of Dual SVM

- The weights are computed as

$$
\boldsymbol{w}^{*}=\sum_{j=1}^{N} \lambda_{j}^{*} y_{j} \boldsymbol{x}_{j}
$$

- This is support vector: λ_{j} is either $\lambda_{j}=0$ or $\lambda_{j}>0$.
- Pick any support vector $\boldsymbol{x}^{+} \in \mathcal{C}_{+}$and $\boldsymbol{x}^{-} \in \mathcal{C}_{-}$.
- Then we have

$$
\boldsymbol{w}^{\top} \boldsymbol{x}^{+}+w_{0}=+1, \quad \text { and } \quad \boldsymbol{w}^{\top} \boldsymbol{x}^{-}+w_{0}=-1
$$

- Sum them, we have $\boldsymbol{w}^{T}\left(\boldsymbol{x}^{+}+\boldsymbol{x}^{-}\right)+2 w_{0}=0$, which means

$$
w_{0}^{*}=-\frac{\left(\boldsymbol{x}^{+}+\boldsymbol{x}^{-}\right)^{T} \boldsymbol{w}^{*}}{2}
$$

Summary of Dual SVM

Reading List

Support Vector Machine

- Mustafa, Learning from Data, e-Chapter
- Duda-Hart-Stork, Pattern Classification, Chapter 5.5
- Chris Bishop, Pattern Recognition, Chapter 7.1
- UCSD Statistical Learning
http://www.svcl.ucsd.edu/courses/ece271B-F09/

