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Outline

Support Vector Machine

Lecture 19 SVM 1: The Concept of Max-Margin

Lecture 20 SVM 2: Dual SVM

Lecture 21 SVM 3: Soft SVM and Kernel SVM

This lecture: Support Vector Machine: Soft and Kernel

Soft SVM

Motivation
Formulation
Interpretation

Kernel Trick

Nonlinearity
Dual Form
Kernel SVM
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Linearly Not Separable

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf
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Soft Margin

We want to allow data points to stay inside the margin.
How about change

yj(wTx j + w0) ≥ 1

to this one:

yj(wTx j + w0) ≥ 1− ξj , and ξj ≥ 0.

If ξj > 1, then x j will be misclassified.
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Soft Margin

We can consider this problem

minimize
w ,w0,ξ

1

2
‖w‖22

subject to yj(wTx j + w0) ≥ 1− ξj ,
ξj ≥ 0, for j = 1, . . . , n,

But we need to control ξ, for otherwise the solution will be ξ =∞.

How about this:

minimize
w ,w0,ξ

1

2
‖w‖22 + C‖ξ‖2

subject to yj(wTx j + w0) ≥ 1− ξj ,
ξj ≥ 0, for j = 1, . . . , n,

Control the energy of ξ.



c©Stanley Chan 2020. All Rights Reserved.

Role of C

If C is big, then we enforce ξ to be small.

If C is small, then ξ can be big.
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No Misclassification?

You can have misclassification in soft SVM
ξj can be big for a few outliers

minimize
w ,w0,ξ

1

2
‖w‖22 + C‖ξ‖2

subject to yj(wTx j + w0) ≥ 1− ξj ,
ξj ≥ 0, for j = 1, . . . ,N.
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L1 Regularization

Instead of `1-norm, you can also do

minimize
w ,w0,ξ

1

2
‖w‖22 + C‖ξ‖1

subject to yj(wTx j + w0) ≥ 1− ξj ,
ξj ≥ 0, for j = 1, . . . ,N.

This enforces ξ to be sparse.

Only a few entries samples are allowed to live in the margin.

The problem remains convex.

So you can still use CVX to solve the problem.
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Connection with Perceptron Algorithm

In soft-margin SVM, ξj ≥ 0 and yj(wTx j + w0) ≥ 1− ξj imply that

ξj ≥ 0, and ξj ≥ 1− yj(wTx j + w0).

We can combine them to get

ξj ≥ max
{

0, 1− yj(wTx j + w0)
}

=
[
1− yj(wTx j + w0)

]
+

So if we use SVM with `1 penalty, then

J(w ,w0, ξ) =
1

2
‖w‖22 + C

N∑
j=1

ξj

=
1

2
‖w‖22 + C

N∑
j=1

[
1− yj(wTx j + w0)

]
+
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Connection with Perceptron Algorithm

This means that the training loss is

J(w ,w0) =
N∑
j=1

[
1− yj(wTx j + w0)

]
+

+
λ

2
‖w‖22,

if we define λ = 1/C .
Now, you can make λ→ 0. This means C →∞
Then,

J(w ,w0) =
N∑
j=1

[
1− yj(wTx j + w0)

]
+

=
N∑
j=1

max
{

0, 1− yj(wTx j + w0)
}

=
N∑
j=1

max {0, 1− yjg(x j)}
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Connection with Perceptron Algorithm

SVM Loss:

J(w ,w0) =
N∑
j=1

max {0, 1− yjg(x j)}

Perceptron Loss:

J(w ,w0) =
N∑
j=1

max {0, −yjg(x j)}

Therefore: SVM generalizes perceptron by allowing

J(w ,w0) =
N∑
j=1

max {0, 1− yjg(x j)}+
λ

2
‖w‖22.

‖w‖22 regularizes the solution.
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Comparing Loss functions

https://scikit-learn.org/dev/auto_examples/linear_model/plot_sgd_loss_

functions.html

https://scikit-learn.org/dev/auto_examples/linear_model/plot_sgd_loss_functions.html
https://scikit-learn.org/dev/auto_examples/linear_model/plot_sgd_loss_functions.html



