ECE595 / STAT598: Machine Learning I Lecture 22.2: Is Learning Feasible?

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PURDUE

Outline

Today's Lecture:

- What constitutes a learning problem?
- Training and testing samples
- Target and Hypothesis function
- Learning Model
- Is learning feasible?
- An example
- The power of probability
- Training versus Testing
- In-sample error
- Out-sample error
- Probability bound

Is Learning Feasible?

In-sample and Out-sample:

- In-sample: Training Data
- Out-sample: Testing Data

When can we claim "learning is feasible"?

Suppose we have a training set \mathcal{D}, can we learn the target function f ?

- "Learn" means: I use the data you give me to come up with an f
- "Successful" means: All in-samples are correctly predicted
- And all out-samples are also correctly predicted
- If YES, then we are in business.
- Learning is feasible!
- If NO, then we can go home and sleep.
- There is just no way to learn f from \mathcal{D}.

Example

- Let $\mathcal{X}=\{0,1\}^{3}$
- Each $\boldsymbol{x} \in \mathcal{X}$ is a binary vector
- E.g., $\boldsymbol{x}=[0,0,1]^{T}$ or $\boldsymbol{x}=[1,0,1]^{T}$
- How many possible vectors are there? $2^{3}=8$
- Call them $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{8}$
- There is a target function f
- f maps every \boldsymbol{x} to a \boldsymbol{y}
- $y \in\{+1,-1\}$
- E.g., $f([0,0,1])=+1, f([0,1,1])=-1$, etc.
- How many possible f 's?
- You can think of f as a 8 -bit vector
- E.g., $f=[+1,-1,-1,-1,+1,+1,+1,-1]$.
- So there are $2^{8}=256$ possible f^{\prime} 's.

Example

- We have 8 input vectors: $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{8}\right\}$
- We have 256 hypotheses: $\mathcal{H}=\left\{h_{1}, \ldots, h_{256}\right\}$
- Is learning feasible?
- Give me a subset $\mathcal{D} \subset \mathcal{X}$, can I find a hypothesis $g \in \mathcal{H}$ such that $g=f$?
- Suppose here is what you are given: $\circ=-1, \bullet=+1$. You know 6 out of 8 . These are the training data.

\boldsymbol{x}_{n}			y_{n}
0	0	0	\circ
0	0	1	\bullet
0	1	0	\bullet
0	1	1	\circ
1	0	0	\bullet
1	0	1	\circ
1	1	0	$?$
1	1	1	$?$

Possibility 1

\boldsymbol{x}_{n}			y_{n}
0	0	0	\circ
0	0	1	\bullet
0	1	0	\bullet
0	1	1	\circ
1	0	0	\bullet
1	0	1	\circ
1	1	0	\circ
1	1	1	\circ

- One 1's will give me •; Others give me \circ
- So the last two entries should be o

Possibility 2

\boldsymbol{x}_{n}			y_{n}
0	0	0	\circ
0	0	1	\bullet
0	1	0	\bullet
0	1	1	\circ
1	0	0	\bullet
1	0	1	\circ
1	1	0	\circ
1	1	1	\bullet

- Odd numbers of 1's give me -
- Even numbers of 1 's give me o
- So [1 1 0] should be o
- So [1111] should be

All the Possibilities

\boldsymbol{x}_{n}			y_{n}	g	f_{1}	f_{2}	f_{3}	f_{4}
0	0	0	\circ	\circ	\circ	\circ	\circ	\circ
0	0	1	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
0	1	0	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
0	1	1	\circ	\circ	\circ	\circ	\circ	\circ
1	0	0	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
1	0	1	\circ	\circ	\circ	\circ	\circ	\circ
1	1	0		\circ	\bullet	\circ	\bullet	\circ
1	1	1		\circ	\bullet	\circ	\circ	\bullet

- $f_{1}, f_{2}, f_{3}, f_{4}$ are the only hypotheses you need to consider
- You just don't know which one out of the four to choose!
- You won't do better the random guess.
- So you haven't learned anything from the training data.
- Learning is infeasible.

The Power of Probability

