PURDUE UNIVERSITY

Discgvery Park

Machine Learning for Chemical Sensing

Chandra S. Mouli
Prof. Bruno Ribeiro

Department of Computer Science
Purdue University

15 May 2019

SMART g _ o= - ==




PURDUE UNIVERSITY

Goal: Nitrate Sensing Discgvery Park
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“Advantages of Fast Chemical Sensing Discgvery Park

Voltage potential takes hours to stabilize
 Measuring data drains battery

« Communication of data drains battery

* Physics-model # real-world data (currently)

Fast chemical sensing:
e Faster answers «/
e Saves battery «
 Short measurement time
 Reduces wireless communication

Q: Can we measure Nitrate concentrations in minutes rather than hours?

« Fast Chemical Sensing,

Discovery Park Integrative Data Science Initiative, June 2018-
June 2020

SMART
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Challenges of Fast Chemical Sensing Discgvery Park
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Fast Chemical Sensing: Initial Results Discgvery Park

Nitrate sensing under highly controlled lab conditions
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‘Machine Learning Challenges Discgvery Park

« Key Challenge:
* Accurate chemical sensors readings depend on slow chemical processes

* Impact:
« Chemical sensor models not yet capable of fast estimation of target chemical
concentrations

* Pure Data-driven Solutions:
« Not enough training data; not enough environmental conditions

SMART
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Some Basic Concepts

SMART
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Definition: Joint Probability Disegvery Park

»Consider a sequence of random variables:

X1y s Xp with X; € Q e.g. () :{

with joint probability distribution
P(X1,...,X,)

» The joint probability is a function

P:Q" — [O, 1] (w/ normalization)

< P takes an ordered sequence and outputs a value between zero
and one (w/ normalization)

SMART
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Conditional Probability Discsvery Park

» Consider a sequence of random variables:

X1y s X with X; € Q e.g. () :{

with joint probability distribution
P(X1,...,X,)

From the joint probability, we can compute the conditional
probability:

-=~- Initial 1 hour

P(X,, ..., Xs|Xs, oo, X1)

SMART t
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A Model for the Conditional Probability  Discevery Park

» 2 models, one encoder, another decoder
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Encoding/Decoding Sequences Discsvery Park

»Example of encoder/decoder:
Long Short Term Memory (LSTM)
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Details: Learning Sequence Models Discavery Park

Backpropagation-Through-Time in a Long Short Term Memory (LSTM)
Neural Network

In theory, the structure of the RNN should allow it to make long-term predictions due to the
variable collision. In practice, this is often not possible due to vanish gradients. That is, in
standard RNNs the signal at H; from its effect at the output of much later Hs is lost in time

due to the multiplication of small gradients.

Long Short Term Memory (LSTM) is a type of RNN that can learn long-term dependencies.

The trick is to have an extra hidden state C; with gates that determine how the information
must be propagated through time. These gates allow the network to remember or to forget
information. The graphical model of an LSTM is essentially the same as the graphical model

of the RNN with an extra memory variable C;.

Letxz; € RM be the the input at time £. Let N be the number of neurons in the hidden
states of the LSTM. Then we get:

e Input Weights: W, W;, W¢, W, € RNxM
e Recurrent Weights: R,, R;, Ry, R, € RV*N
e Bias Weights: b, b;, bs, b, € RN

SMART
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Details: Learning Sequence Models Discavery Park

The forward pass in the LSTM is given by:
z; = tanh(W,z; + R.hy 1 + b))
ir = o(Wiz; + Rihy_1 + b;)
fi = O'(Wf:L't + Rshi—1 + bf)
ct =2t @1 +ci-1 O fy
O = O'(WOIEt + Roht—l + bo)
h: = tanh(c;) ® o,

where "®" is the element-wise multiplication and "¢" is the sigmoid function.

We will simplify our LSTM by directly mapping from the hidden variables h; to the output

probabilities through a softmax:
Y, = softmax(h;).

SMART
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Details: Learning Sequence Models
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Discgvery Park

Backpropagation-through-Time

The negative log-likelihood error for an input sequence x = (z1,...,2r) of one-hot

encoded values is:

Z L(yf L] wt

L!um! y)x)

where

N
L(g;,2e) = —Zxa[i] - log(y[i])

and is a one-hot encoded vector x; = (0,...,1,...,0) of dimension N.

Define L(4j,, ;) as L to simplify the notation. To backpropagate, we need to compute the
gradient of the loss with respect to each predicted output g, , forallt = 1,...,T for each

of the variables. We will start with the hidden variables.

Derivatives with respect to h,

BLM"; B 3L1 aL"g BL;' 3_[11.1 _ BL]'
oh, _ Oh, Oh T om, T om, T Tom,

t=1,...,T.

Since we assume that the future hidden states are not affecting the past observations,
oL
ahy
hidden state hy w.rt. L is

= QO forallt > j,and we can limit the influence of h; to j > t. The derivative of the

0Ly .
ah‘t - (IE - ?,"g),

since x is a one-hot vector and g, [¢] is the probability z;[i] = 1, = 1,..., N.

This gives:

We will also note thatfor 7 =t +m,m > 1,

OLiim o OLtim Ohtim . Ohg i

dhy  Ohyym Ohym 1 Ohy
g | nrs AR hY [ ]

scalable manufacturing of
aware & responsive thin films

where "-" is the matrix multiplication operator.

The rest of the derivation is mostly bookeeping. The derivatives of h;_; w.r.t. hy are:

Ohy Ho, dtanh(c)

= tanh
Bhy,  ranh(e) © Gt o 0 =5 =
Noting that
dtanh(c;) 5 de,
———— = (1 — tanh
Ohy (1 tank(e) © Zo
and
9o _ 9n ;4 O o, So @f+8f‘ Gc
Ohiy Oy 3h: L T By T Bk, T
Since 3;: 11 = 0 as ¢;1 only depends on h;_» and the future does not affect the past, then
Ohy Oh, dh, dh, oh,
=R,—+R.— +R,— +R
aht_l 3 O a Zt * a faft
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Details: Learning Sequence Models
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Derivatives with respect to c;

Another key variable in the backpropagation algorithm is ¢;. Similar to h;,
OLiotal 3L1 OL; T OL; = 0Ly JdLy £ 1
de,  Oc | Oe ey dey ey T

T.

+...+

Similarly, since we assume that the memory hidden states are not affecting the current or

past observations, f;"' = Oforallt = j, and we can limit the influence of ¢; to 7 > . This

gives
OL T 8L,
wtm{:z J‘ t=2,...,T.
deiy “~ 0c
Note that
oL oL, O OL
L=t = 2o f,
Bct 1 SCE 6CE 1 86:
where

This imples form = 1,
8Lg_m _ 5Lt+m Bch 865 8L @f
de B Ociim 0ciim1 3Cr.—1 6f’a o

that is, whether the memory hidden variable ¢;_1 influences the long-term future or not

O] f:‘—m

depends on the multiplications of the forget gate.

Looking at the foward equations, we can directly derive

oL, JdL; Bh,t st ,
— — 1 o . l X
dey Ohs 8c; Ol ® o © (1 — tanh™(¢;))
This makes the total gradient for ¢; as
BLwiui aL, T— oL,
=t 11—t h - O
T Oc GhtoorO( an ;&“m ® foim @O fin
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The remaining derivatives are all local, do not propagate over time

Forinstance,

de z": d
ow.

W t=1 t=1 m=0 t=1 m=0
noting that
OLiim _ OLiw Ocr _ iim .
aZg N an (')zf_ a a::t !

Note that during backpropagation, at time ¢ we only need to know

aLt m .
(%)

to perform the above calculation, which can be calculated cumulatively at each backward

step.
In a similar fashion, we can calculate the derivatives of the other parameters. Some will be
(Z aLt fm )
7
m= aCf,

others will be easier to compute with

easier to compute with

! m

Because of the simpler form of ,we will use ¢; whenever we can.

15



Deep Learning + Physics
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Discgvery Park

Sensor readings
predicted by ML model  Actya/ sensor readings
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Learning over Sets Discavery Park

A sensor will have multiple detectors

How to combine a set of measurements?

How should we model sets?

SMART
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Probabilities over Unordered Sequences (Sets) Discgvery Park

» [Lonsider a set of random variables:

withXi € €2

how should we define their joint probability distribution?

»  Definition: The probability distribution Zsuch that
P(X1,..., X0) = P(Xn1)s s X))

is true for any permutation 7z of (1.....n)

Useful reference: (Murphy et al., ICLR 2019) Janossy Pooling: Learning Deep Permutation-
Invariant Functions for Variable-Size Inputs

SMART
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Pooling for Input Invariances

Deep learning has four basic building blocks:

Learnable
Sensitive to input permutations (vectors)

Feedforward Cramvieliiemal Recurrent
Layer Layer (Filter) Layer
Deterministic

Insensitive to input permutations (set inputs)

1:sum-pooling(h) =Zi hi
f

1
fmean-pooling(h)=m Zi hi

Pooling Layer
(h)=max(h1, cee ) h|h|) m|n poollng(h) mln(hl h|h|)

max-pooling

» bGrowing interest in developing learnable pooling layers

(Zaheer et al., 2017), (Ravanbakhsh et al., 2017), (Vinyals et al., 2016) , (Rezatofighi et al., 2018), (Lee
et al., 2017), (Lee et al., 2018)
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A Seed Growing...

Learnable
Sensitive to input permutations (vectars)

4
Feedforward Sovelliideral Recurrent
Layer Layer (Filter) Layer

Learnable
Insensitive to input permutations (sets)

Janossy Pooling

Layer (Murphy et al. ICLR 2019)

Joint wark with £ Murphy™, B Srinivasan™, V. Rao

(Murphy et al., ICLR 2019) R. Murphy, B. Srinivasan, V. Rao, and B. R.,
"Janossy Pooling: Learning Deep Permutation-invariant Functions for Variable-size Inputs”, ICLR 2019.



Janossy Pooling (Murphy et al. [CLR 2013)

» Janossy pooling:

1 5
F(h; 0) = W;ﬂhn; 9)

where f is a learnable permutation-sensitive function.

Many choices of f :

» RNNs, LSTMs, GRUs (/o7 variable-size inputs)
» Feedforward Networks

» Convolutional Neural Netwarks (CNNs)
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Computational Tractability of Janossy Pooling SRR

Janossy pooling work describes 3 approaches to tractably learn £
. Tractability through canonical ordering
7. Tractability through k-ary dependencies

3. Tractability through stochastic optimization

Janossy pooling provides unified framework:

All literature falls into these 3 categories



|. Tractability through canonical ordering

» Learning-to-sort input: (Vinyals et al., 2016) , (Rezatofighi et al., 2018),
(Lee et al., 2017), (Lee et al., 2018)

» Find the best permutation
o Discrete optimization problem
o [(n!) complexity

» dpecial cases:
o Max-pooling
o Min-pooling



2. Tractability through k-ary dependencies

» Assume k-ary dependencies over input

n o
»  SUMS Over (k) combinations of elements (rather than n!)

» dpecial cases:
o Deep dets (Zaheer et al., 2017): k=I, n scaling
o Mean-pooling: k=1, 1/n scaling




3. Tractability through Stochastic Optimization

»  SGD: standard Stochastic Gradient Descent
} sample a mini-batch

/ backpropagate to compute gradients of batch
3. update model with one gradient descent step
4

GOTO I:

3 SGD (as fast as SGL)
sample a mini-batch

sample one permutation =¥) for each example xU) in mini-batch

backpropagate to compute gradients
update model with one gradient descent step

GOTO I:

-
}
2
3. perform forward pass with the sampled permutation
4
i
b

Janossy Pooling
A

Backpropagation FUnl by, 69)
utes g — Forward pass

computes gradient Friend 1_{ = =

chooses one
over sampled M h,

° |h|! permutations 2 —lg :
- | > permutation
ermutation on -
P Y Friend 3 | hs| | & randomly
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» Theorem 2.1 (Murphy et al. 2018): Learns proper permutation-invariant model
o But model "changes’!

» Explains great results of LSTMs as pooling in graph models

o LraphSAGE (Hamilton, Ving & Leskover, Z017)
o [leep Lollective Inference (Moore & Neville, Z17)

o more ways to improve model trained by 77-SGD (see paper)

» inference at test time: average outputs over all permutations
o gvg. a sampled permutations enough for GraphSAGE tasks
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