
1

Machine Learning for Chemical Sensing

Chandra S. Mouli
Prof. Bruno Ribeiro
Department of Computer Science
Purdue University

15 May 2019

2

Goal: Nitrate Sensing

Prof. Babak Ziaie (ECE)
Prof. Dimitri Peroulis (ECE)
Prof. Ali Shakouri (ECE)
Hongjie Jiang (ECE)
Rahim Rahimi (ECE)

Nitrate Sensor

Prof. Muhammad Alam (ECE)
Xin Jin (ECE)

Challenges:
• Battery-powered (sensor must sleep often)
• Low-powered sensor (noise)
• Physics-based model ≠ real-world data
• Wireless communication (data transmission

drains battery)

Nitrate in soil

+ =
Real Data

Sensor voltages
(time series)

Vo
lta

ge
 (m

V
)

Time (seconds)

Physics-based model

Not same transient

Vo
lta

ge
 (m

V
)

Time (seconds)

3

Advantages of Fast Chemical Sensing

Voltage potential takes hours to stabilize
• Measuring data drains battery
• Communication of data drains battery
• Physics-model ≠ real-world data (currently)

Fast chemical sensing:
• Faster answers
• Saves battery

• Short measurement time
• Reduces wireless communication

Q: Can we measure Nitrate concentrations in minutes rather than hours?

• Fast Chemical Sensing,
Discovery Park Integrative Data Science Initiative, June 2018-
June 2020

✅
✅

4

Challenges of Fast Chemical Sensing

In
pu

t d
at

a
(1

hr
)

Real data

Future

Correct prediction?
?

?

?

Vo
lta

ge
 (m

V
)

5

Fast Chemical Sensing: Initial Results

In
pu

t d
at

a
(1

hr
) Real data

Future

predicted values
Nitrate sensing under highly controlled lab conditions

Vo
lta

ge
 (m

V
)

?

?

?

Physics-based modelVo
lta

ge
 (m

V
)

Time (seconds)

6

Machine Learning Challenges

• Key Challenge:
• Accurate chemical sensors readings depend on slow chemical processes

• Impact:
• Chemical sensor models not yet capable of fast estimation of target chemical

concentrations

• Pure Data-driven Solutions:
• Not enough training data; not enough environmental conditions

7

Some Basic Concepts

8

Consider a sequence of random variables:

with joint probability distribution

The joint probability is a function

P takes an ordered sequence and outputs a value between zero
and one (w/ normalization)

Definition: Joint Probability

with𝑋𝑋1, … ,𝑋𝑋𝑛𝑛

(w/ normalization)

8

9

Consider a sequence of random variables:

with joint probability distribution

From the joint probability, we can compute the conditional
probability:

Conditional Probability

with𝑋𝑋1, … ,𝑋𝑋𝑛𝑛

9

P(𝑋𝑋𝑛𝑛, … ,𝑋𝑋𝑡𝑡|𝑋𝑋𝑡𝑡 , … ,𝑋𝑋1)

t

10

A Model for the Conditional Probability

2 models, one encoder, another decoder

Past

Future

Intermediate
Representation

𝑐𝑐𝑡𝑡

11

Encoding/Decoding Sequences

Example of encoder/decoder:
Long Short Term Memory (LSTM)

12

Details: Learning Sequence Models

13

Details: Learning Sequence Models

14

Details: Learning Sequence Models

15

Details: Learning Sequence Models

16

• Approach:
• Deep Learning Models with Physics as prior knowledge

• Data-driven predictions under soil / weather conditions with
enough data

(e.g., Northern Indiana farms)
• Physics-based predictions under soil / weather conditions

where data is unreliable
(e.g., Southern Indiana farms)

• Automatically detect, from sensor voltages, when data-driven
prediction will be reliable / unreliable

Deep Learning + Physics

Physics-based
Approximation

Neural net
learns physics

by example
Limited Real
Sensor Data

Final Neural
Network

Predictions

E
le

ct
ric

al

si
gn

al
 in

pu
ts

Chemical
concentration

Real data under all
soil / weather conditions:

Illustration of approach:
Final Predictions
Combine Physics

& Data

17

Results of encoder/decoder approach
with physics model priors

Actual sensor readings
Sensor readings
predicted by ML model

Past Future Past Future

18

A sensor will have multiple detectors

How to combine a set of measurements?

How should we model sets?

Learning over Sets

19

Probabilities over Unordered Sequences (Sets)

 Consider a set of random variables:

how should we define their joint probability distribution?

 Definition: The probability distribution P such that

is true for any permutation 𝜋𝜋 of (1,…,n)

with

Useful reference: (Murphy et al., ICLR 2019) Janossy Pooling: Learning Deep Permutation-
Invariant Functions for Variable-Size Inputs

19

Deep learning has four basic building blocks:

Feedforward
Layer

Convolutional
Layer (Filter)

Recurrent
Layer

Pooling Layer

and

Learnable
Sensitive to input permutations (vectors)

fsum-pooling(h)=∑𝑖𝑖 ℎ𝑖𝑖
fmax-pooling(h)=max(ℎ1, … , ℎ 𝒉𝒉)

fmean-pooling(h)= 1
|𝒉𝒉|

∑𝑖𝑖 ℎ𝑖𝑖

fmin-pooling(h)=min(ℎ1, … , ℎ 𝒉𝒉)

 Growing interest in developing learnable pooling layers
(Zaheer et al., 2017), (Ravanbakhsh et al., 2017), (Vinyals et al., 2016) , (Rezatofighi et al., 2018), (Lee
et al., 2017), (Lee et al., 2018)

Deterministic
Insensitive to input permutations (set inputs)

Feedforward
Layer

Convolutional
Layer (Filter)

Recurrent
Layer

Learnable
Sensitive to input permutations (vectors)

Janossy Pooling
Layer

Learnable
Insensitive to input permutations (sets)

(Murphy et al. ICLR 2019)

(Murphy et al., ICLR 2019) R. Murphy, B. Srinivasan, V. Rao, and B. R.,
"Janossy Pooling: Learning Deep Permutation-invariant Functions for Variable-size Inputs", ICLR 2019.

Joint work with R. Murphy*, B. Srinivasan*, V. Rao

 Janossy pooling:

𝑓𝑓 𝒉𝒉;𝜽𝜽 =
1
𝒉𝒉 !

�
𝜋𝜋∈Π

𝑓𝑓(𝒉𝒉𝜋𝜋;𝜽𝜽)

where 𝑓𝑓 is a learnable permutation-sensitive function.

Many choices of 𝑓𝑓 :
 RNNs, LSTMs, GRUs (for variable-size inputs)
 Feedforward Networks
 Convolutional Neural Networks (CNNs)

Janossy pooling work describes 3 approaches to tractably learn 𝑓𝑓

1. Tractability through canonical ordering

2. Tractability through 𝑘𝑘-ary dependencies

3. Tractability through stochastic optimization

Janossy pooling provides unified framework:

All literature falls into these 3 categories

 Learning-to-sort input: (Vinyals et al., 2016) , (Rezatofighi et al., 2018),
(Lee et al., 2017), (Lee et al., 2018)

 Find the best permutation
◦ Discrete optimization problem
◦ O(n!) complexity

 Special cases:
◦ Max-pooling
◦ Min-pooling

 Assume k-ary dependencies over input

 Sums over
𝑛𝑛
𝑘𝑘 combinations of elements (rather than n!)

 Special cases:
◦ Deep Sets (Zaheer et al., 2017): k=1, n scaling
◦ Mean-pooling: k=1, 1/n scaling

𝐡𝐡1

𝐡𝐡2

𝐡𝐡3

Friend 1

Friend 2

Friend 3

 SGD: standard Stochastic Gradient Descent
1. sample a mini-batch
2. backpropagate to compute gradients of batch
3. update model with one gradient descent step
4. GOTO 1:

 𝝅𝝅-SGD (as fast as SGD)
1. sample a mini-batch
2. sample one permutation 𝝅𝝅(𝒋𝒋) for each example 𝐱𝐱(𝑗𝑗) in mini-batch
3. perform forward pass with the sampled permutation
4. backpropagate to compute gradients
5. update model with one gradient descent step
6. GOTO 1:

Forward pass
chooses one
permutation
randomly

Backpropagation
computes gradient
over sampled
permutation only

 Theorem 2.1 (Murphy et al. 2018): Learns proper permutation-invariant model
◦ But model “changes”!

 Explains great results of LSTMs as pooling in graph models
◦ GraphSAGE (Hamilton, Ying & Leskovec, 2017)
◦ Deep Collective Inference (Moore & Neville, 2017)
◦ more ways to improve model trained by 𝜋𝜋-SGD (see paper)

 inference at test time: average outputs over all permutations
◦ avg. 5 sampled permutations enough for GraphSAGE tasks

	Machine Learning for Chemical Sensing
	Goal: Nitrate Sensing
	Advantages of Fast Chemical Sensing
	Challenges of Fast Chemical Sensing
	Fast Chemical Sensing: Initial Results
	Machine Learning Challenges
	Some Basic Concepts
	Definition: Joint Probability
	Conditional Probability
	A Model for the Conditional Probability
	Encoding/Decoding Sequences
	Details: Learning Sequence Models
	Details: Learning Sequence Models
	Details: Learning Sequence Models
	Details: Learning Sequence Models
	Deep Learning + Physics
	Results of encoder/decoder approacch
	Learning over Sets
	Probabilities over Unordered Sequences (Sets)
	Pooling for Input Invariances
	A Seed Growing…
	Janossy Pooling (Murphy et al. ICLR 2019)
	Computational Tractability of Janossy Pooling
	1. Tractability through canonical ordering
	2. Tractability through k-ary dependencies
	3. Tractability through Stochastic Optimization
	𝜋-SGD

