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Challenges: 
• Battery-powered (sensor must sleep often)
• Low-powered sensor (noise)
• Physics-based model ≠ real-world data
• Wireless communication (data transmission

drains battery)
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Advantages of Fast Chemical Sensing

Voltage potential takes hours to stabilize
• Measuring data drains battery
• Communication of data drains battery
• Physics-model  ≠ real-world data (currently)

Fast chemical sensing: 
• Faster answers
• Saves battery 

• Short measurement time
• Reduces wireless communication

Q: Can we measure Nitrate concentrations in minutes rather than hours?

• Fast Chemical Sensing, 
Discovery Park Integrative Data Science Initiative, June 2018-
June 2020

✅
✅
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Challenges of Fast Chemical Sensing
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Fast Chemical Sensing: Initial Results
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Machine Learning Challenges

• Key Challenge: 
• Accurate chemical sensors readings depend on slow chemical processes

• Impact:
• Chemical sensor models not yet capable of fast estimation of target chemical 

concentrations

• Pure Data-driven Solutions:
• Not enough training data; not enough environmental conditions
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Some Basic Concepts
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Consider a sequence of random variables:

with joint probability distribution

The joint probability is a function

P takes an ordered sequence and outputs a value between zero 
and one (w/ normalization)

Definition: Joint Probability

with𝑋𝑋1, … ,𝑋𝑋𝑛𝑛

(w/ normalization)
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Consider a sequence of random variables:

with joint probability distribution

From the joint probability, we can compute the conditional 
probability:

Conditional Probability

with𝑋𝑋1, … ,𝑋𝑋𝑛𝑛

9

P(𝑋𝑋𝑛𝑛, … ,𝑋𝑋𝑡𝑡|𝑋𝑋𝑡𝑡 , … ,𝑋𝑋1)

t
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A Model for the Conditional Probability

2 models, one encoder, another decoder

Past

Future

Intermediate 
Representation

𝑐𝑐𝑡𝑡



11

Encoding/Decoding Sequences

Example of encoder/decoder: 
Long Short Term Memory (LSTM)
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Details: Learning Sequence Models



13

Details: Learning Sequence Models
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Details: Learning Sequence Models
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Details: Learning Sequence Models
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• Approach: 
• Deep Learning Models with Physics as prior knowledge

• Data-driven predictions under soil / weather conditions with 
enough data 

(e.g., Northern Indiana farms)
• Physics-based predictions under soil / weather conditions 

where data is unreliable 
(e.g., Southern Indiana farms)

• Automatically detect, from sensor voltages, when data-driven 
prediction will be reliable / unreliable

Deep Learning + Physics
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Results of encoder/decoder approach 
with physics model priors

Actual sensor readings
Sensor readings 
predicted by ML model

Past Future Past Future
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A sensor will have multiple detectors

How to combine a set of measurements?

How should we model sets?

Learning over Sets
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Probabilities over Unordered Sequences (Sets)

 Consider a set of random variables:

how should we define their joint probability distribution?

 Definition: The probability distribution P such that

is true for any permutation 𝜋𝜋 of (1,…,n)

with

Useful reference: (Murphy et al., ICLR 2019) Janossy Pooling: Learning Deep Permutation-
Invariant Functions for Variable-Size Inputs

19



Deep learning has four basic building blocks:

Feedforward
Layer

Convolutional 
Layer (Filter)

Recurrent 
Layer

Pooling Layer

and

Learnable
Sensitive to input permutations (vectors)

fsum-pooling(h)=∑𝑖𝑖 ℎ𝑖𝑖
fmax-pooling(h)=max(ℎ1, … , ℎ 𝒉𝒉 )

fmean-pooling(h)= 1
|𝒉𝒉|

∑𝑖𝑖 ℎ𝑖𝑖

fmin-pooling(h)=min(ℎ1, … , ℎ 𝒉𝒉 )

 Growing interest in developing learnable pooling layers
(Zaheer et al., 2017), (Ravanbakhsh et al., 2017), (Vinyals et al., 2016) , (Rezatofighi et al., 2018), (Lee 
et al., 2017), (Lee et al., 2018)

Deterministic
Insensitive to input permutations (set inputs)



Feedforward
Layer

Convolutional 
Layer (Filter)

Recurrent 
Layer

Learnable
Sensitive to input permutations (vectors)

Janossy Pooling 
Layer

Learnable
Insensitive to input permutations (sets)

(Murphy et al.  ICLR 2019)

(Murphy et al., ICLR 2019) R. Murphy, B. Srinivasan, V. Rao, and B. R., 
"Janossy Pooling: Learning Deep Permutation-invariant Functions for Variable-size Inputs", ICLR 2019. 

Joint work with R. Murphy*, B. Srinivasan*, V. Rao



 Janossy pooling:

𝑓𝑓 𝒉𝒉;𝜽𝜽 =
1
𝒉𝒉 !

�
𝜋𝜋∈Π

𝑓𝑓(𝒉𝒉𝜋𝜋;𝜽𝜽)

where 𝑓𝑓 is a learnable permutation-sensitive function.

Many choices of 𝑓𝑓 :
 RNNs, LSTMs, GRUs (for variable-size inputs)
 Feedforward Networks
 Convolutional Neural Networks (CNNs)



Janossy pooling work describes 3 approaches to tractably learn 𝑓𝑓

1. Tractability through canonical ordering

2. Tractability through 𝑘𝑘-ary dependencies

3. Tractability through stochastic optimization

Janossy pooling provides unified framework: 

All literature falls into these 3 categories



 Learning-to-sort input: (Vinyals et al., 2016) , (Rezatofighi et al., 2018), 
(Lee et al., 2017), (Lee et al., 2018)

 Find the best permutation
◦ Discrete optimization problem
◦ O(n!) complexity

 Special cases:
◦ Max-pooling
◦ Min-pooling



 Assume k-ary dependencies over input

 Sums over 
𝑛𝑛
𝑘𝑘 combinations of elements (rather than n!)

 Special cases:
◦ Deep Sets (Zaheer et al., 2017): k=1, n scaling
◦ Mean-pooling: k=1, 1/n scaling



𝐡𝐡1

𝐡𝐡2

𝐡𝐡3

Friend 1

Friend 2

Friend 3

 SGD: standard Stochastic Gradient Descent
1. sample a mini-batch
2. backpropagate to compute gradients of batch
3. update model with one gradient descent step
4. GOTO 1:

 𝝅𝝅-SGD (as fast as SGD)
1. sample a mini-batch
2. sample one permutation 𝝅𝝅(𝒋𝒋) for each example 𝐱𝐱(𝑗𝑗) in mini-batch
3. perform forward pass with the sampled permutation
4. backpropagate to compute gradients
5. update model with one gradient descent step
6. GOTO 1:

Forward pass 
chooses one 
permutation 
randomly

Backpropagation
computes gradient
over sampled 
permutation only



 Theorem 2.1 (Murphy et al. 2018): Learns proper permutation-invariant model
◦ But model “changes”!

 Explains great results of LSTMs as pooling in graph models
◦ GraphSAGE (Hamilton, Ying & Leskovec, 2017)
◦ Deep Collective Inference (Moore & Neville, 2017) 
◦ more ways to improve model trained by 𝜋𝜋-SGD (see paper)

 inference at test time: average outputs over all permutations
◦ avg. 5 sampled permutations enough for GraphSAGE tasks
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