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Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier
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Outline

Discriminative Approaches

Lecture 16 Perceptron 1: Definition and Basic Concepts

Lecture 17 Perceptron 2: Algorithm and Property

Lecture 18 Multi-Layer Perceptron: Back Propagation

This lecture: Perceptron 2

Perceptron Algorithm
Loss Function
Algorithm

Optimality
Uniqueness
Batch and Online Mode

Convergence
Main Results
Implication
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Perceptron with Hard Loss

Historically, we have perceptron algorithm way earlier than CVX.

Before the age of CVX, people solve perceptron using gradient
descent.

Let us be explicit about which loss:

Jhard(θ) =
N∑
j=1

max
{
− yjhθ(x j), 0

}

Jsoft(θ) =
N∑
j=1

max
{
− yjgθ(x j), 0

}
Goal: To get a solution for Jhard(θ)

Approach: Gradient descent on Jsoft(θ)
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Re-defining the Loss

Main idea: Use the fact that

Jsoft(θ) =
N∑
j=1

max
{
− yjgθ(x j), 0

}
is the same as this loss function

J(θ) = −
∑

j∈M(θ)

yjgθ(x j).

M(θ) ⊆ {1, . . . ,N} is the set of misclassified samples.

Run gradient descent on J(θ), but fixing M(θ)←M(θk) for
iteration k.
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Equivalent Perceptron Loss

We want to show that the perceptron loss function is equivalent to

N∑
j=1

max
{
− yjgθ(x j), 0

}
︸ ︷︷ ︸

Jsoft(θ)

= −
∑

j∈M(θ)

yjgθ(x j)︸ ︷︷ ︸
J(θ)

If x j is misclassified (j ∈M(θ))

then by definition of M(θ) we have sign {gθ(x j)} 6= yj
So −yjgθ(x j) > 0
Therefore, max{−yjgθ(x j), 0} = −yjgθ(x j).

If x j is correctly classified (j 6∈ M(θ))

then by definition of M(θ) we have sign {gθ(x j)} = yj
So −yjgθ(x j) < 0
Therefore, max{−yjgθ(x j), 0} = 0.
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Equivalent Perceptron Loss

Therefore, we conclude that

M(θ) = {j | yjgθ(x j) < 0}

and

Jsoft(θ) =
∑

j∈M(θ)

max
{
− yjgθ(x j), 0

}
+

∑
j 6∈M(θ)

max
{
− yjgθ(x j), 0

}
=

∑
j∈M(θ)

−yjgθ(x j) +
∑

j 6∈M(θ)

0

=
∑

j∈M(θ)

−yjgθ(x j) = J(θ).

Minimizing J(θ) is less obvious because M(θ) depends on θ.

But it gives a very easy algorithm.
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Perceptron Algorithm

The loss is
J(θ) = −

∑
j∈M(θ)

yjgθ(x j),

At iteration k , fix Mk =M(θ(k))

Then, update via gradient descent

θ(k+1) = θ(k) − αk∇θJ(θ(k))

= θ(k) − αk

∑
j∈Mk

∇θ

(
− yjgθ(x j)

)
.
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Perceptron Algorithm

We can show that

∇θ

(
− yjgθ(x j)

)
=

{
−yj∇θ

(
w

T
x j + w0

)
,

0, ,

=

= −yj

[
x j

1

]
if j ∈Mk ,

0, if j 6∈ Mk .

Thus, the update is[
w

(k+1)

w
(k+1)
0

]
=

[
w

(k)

w
(k)
0

]
+ αk

∑
j∈Mk

[
yjx j
yj

]
.
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Perceptron Algorithm

The algorithm is

For k = 1, 2, . . . ,

Update Mk = {j | yjgθ(x j) < 0} for θ = θ(k).

Gradient descent[
w

(k+1)

w
(k+1)
0

]
=

[
w

(k)

w
(k)
0

]
+ αk

∑
j∈Mk

[
yjx j
yj

]
.

End For

The set Mk can grow or can shrink from Mk−1.

If training samples are linearly separable, then converge. Zero training
loss.

If training samples are not linearly separable, then oscillates.
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Updating One Sample




