ECE595 / STAT598: Machine Learning I
 Lecture 17.2: Perceptron 2 - Optimality

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University

Purdue

Outline

Discriminative Approaches

- Lecture 16 Perceptron 1: Definition and Basic Concepts
- Lecture 17 Perceptron 2: Algorithm and Property
- Lecture 18 Multi-Layer Perceptron: Back Propagation

This lecture: Perceptron 2

- Perceptron Algorithm
- Loss Function
- Algorithm
- Optimality
- Uniqueness
- Batch and Online Mode
- Convergence
- Main Results
- Implication

Non-uniqueness of Global Minimizer

Optimality of Perceptron Algorithm

- Let perceptron algorithm output

$$
\boldsymbol{\theta}_{\text {perceptron }}^{*}=\text { Perceptron Algorithm }\left(\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}\right)
$$

- Let ideal solution

$$
\boldsymbol{\theta}_{\text {hard }}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J_{\text {hard }}(\boldsymbol{\theta}) .
$$

That means

$$
J_{\text {hard }}\left(\theta_{\text {hard }}^{*}\right) \leq J_{\text {hard }}(\boldsymbol{\theta}), \quad \forall \boldsymbol{\theta}
$$

- If the two classes are linearly separable, then $\boldsymbol{\theta}_{\text {perceptron }}^{*}$ is a global minimizer:

$$
J_{\text {hard }}\left(\boldsymbol{\theta}_{\text {perceptron }}^{*}\right) \leq J_{\text {hard }}(\boldsymbol{\theta}), \quad \forall \boldsymbol{\theta}
$$

and

$$
J_{\text {hard }}\left(\theta_{\text {perceptron }}^{*}\right)=J_{\text {hard }}\left(\theta_{\text {hard }}^{*}\right)=0
$$

Uniqueness of Perceptron Solution

- If $\boldsymbol{\theta}^{*}$ minimizes $J_{\text {hard }}\left(\boldsymbol{\theta}^{*}\right)$, then $\alpha \boldsymbol{\theta}^{*}$ for some constant $\alpha>0$ also minimizes $J_{\text {hard }}\left(\boldsymbol{\theta}^{*}\right)$.
- This is because

$$
\begin{aligned}
g_{\alpha \boldsymbol{\theta}}(\boldsymbol{x}) & =(\alpha \boldsymbol{w})^{T} \boldsymbol{x}+\left(\alpha w_{0}\right) \\
& =\alpha\left(\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}\right) .
\end{aligned}
$$

- If $g_{\theta}(\boldsymbol{x})>0$, then $g_{\alpha \boldsymbol{\theta}}(\boldsymbol{x})>0$. So if $h_{\boldsymbol{\theta}}(\boldsymbol{x})=+1$, then $h_{\alpha \boldsymbol{\theta}}(\boldsymbol{x})=+1$.
- If $g_{\theta}(\boldsymbol{x})<0$, then $g_{\alpha \theta}(\boldsymbol{x})<0$. So if $h_{\theta}(\boldsymbol{x})=-1$, then $h_{\alpha \theta}(\boldsymbol{x})=-1$.
- The sign of $\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}$ is unchanged as long as $\alpha>0$.

$$
\begin{aligned}
J_{\text {hard }}\left(\boldsymbol{\theta}^{*}\right) & =\sum_{j=1}^{N} \max \left\{-y_{j} h_{\boldsymbol{\theta}^{*}}\left(\boldsymbol{x}_{j}\right), 0\right\} \\
& =\sum_{j=1}^{N} \max \left\{-y_{j} h_{\alpha \boldsymbol{\theta}^{*}}\left(\boldsymbol{x}_{j}\right), 0\right\}=J_{\text {hard }}\left(\alpha \boldsymbol{\theta}^{*}\right)
\end{aligned}
$$

Factors for Uniqueness

- Initialization
- Start at a different location, end on a different location
- You still converge, but no longer unique solution
- \mathcal{M}_{k} changes

Factors for Uniqueness

- Step Size
- Too large step: oscillate
- Too small step: slow movement
- Terminates as long as no misclassification

Batch vs Online Mode

- Batch mode

$$
\left[\begin{array}{l}
\boldsymbol{w}^{(k+1)} \\
w_{0}^{(k+1)}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{w}^{(k)} \\
w_{0}^{(k)}
\end{array}\right]+\alpha_{k} \sum_{j \in \mathcal{M}_{k}}\left[\begin{array}{c}
y_{j} \boldsymbol{x}_{j} \\
y_{j}
\end{array}\right] .
$$

Update via the average of misclassified samples

- Online mode

$$
\left[\begin{array}{c}
\boldsymbol{w}^{(k+1)} \\
w_{0}^{(k+1)}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{w}^{(k)} \\
w_{0}^{(k)}
\end{array}\right]+\alpha_{k}\left[\begin{array}{c}
y_{j} \boldsymbol{x}_{j} \\
y_{j}
\end{array}\right],
$$

Update via a single misclassified sample

- j is a sample randomly picked from \mathcal{M}_{k}.
- Stochastic gradient descent.

Online Mode

Batch Mode

Batch Mode

Step Size

Batch mode: Step size too large.

Step Size

Batch mode: Step size too large.

Step Size

Batch mode: Step size too large.

Step Size

Batch mode: Step size too large.

Step Size

Batch mode: Step size too large.

Step Size

Batch mode: Step size too large.

Step Size

Batch mode: Step size too large.

Step Size

Batch mode: Step size too large.

Linearly Not Separable

- No separating hyperplane
- CVX will still find you a solution
- But loss is no longer zero
- Perceptron algorithm will not converge

Linearly Not Separable

If the two classes are overlapping

Linearly Not Separable

Linearly Not Separable

If the two classes are overlapping

Linearly Not Separable

If the two classes are overlapping

Linearly Not Separable

If the two classes are overlapping

Linearly Not Separable

If the two classes are overlapping

Linearly Not Separable

If the two classes are overlapping

