ECE595 / STAT598: Machine Learning I
 Lecture 23.1: Probability Inequality - Basic Inequalities

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University

PuRDUE

Outline

- Lecture 22 Is Learning Feasible?
- Lecture 23 Probability Inequality
- Lecture 24 Probably Approximate Correct

Today's Lecture:

- Basic Inequalities
- Markov and Chebyshev
- Interpreting the results
- Advance Inequalities
- Chernoff inequality
- Hoeffding inequality

Empirical Average

- We want to take a detour to talk about probability inequalities
- These inequalities will become useful when studying learning theory

Let us look at 1D case.

- You have random variables $X_{1}, X_{2}, \ldots, X_{N}$.
- Assume independently identically distributed i.i.d.
- This implies

$$
\mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[X_{2}\right]=\ldots=\mathbb{E}\left[X_{N}\right]=\mu
$$

- You compute the empirical average

$$
\nu=\frac{1}{N} \sum_{n=1}^{N} X_{n}
$$

- How close is ν to μ ?

As N grows ...

As N grows ...

Interpreting the Empirical Average

$$
\nu=\frac{1}{N} \sum_{n=1}^{N} X_{n}
$$

- ν is a random variable
- ν has CDF and PDF
- ν has mean

$$
\begin{aligned}
\mathbb{E}[\nu]=\mathbb{E}\left[\frac{1}{N} \sum_{n=1}^{N} X_{n}\right] & =\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[X_{n}\right] \\
& =\frac{1}{N} N \mu=\mu
\end{aligned}
$$

- Note that " $\mathbb{E}[\nu]=\mu$ " is not the same as " $\nu=\mu$ ".
- What is the probability ν deviates from μ ?

Probability of Bad Event

$$
\mathbb{P}[|\nu-\mu|>\epsilon]=?
$$

- $\mathcal{B}=\{|\nu-\mu|>\epsilon\}$: The \mathcal{B} ad event: ν deviates from μ by at least ϵ
- $\mathbb{P}[\mathcal{B}]=$ probability that this bad event happens.
- Want $\mathbb{P}[\mathcal{B}]$ small. So upper bound it by δ.

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq \delta
$$

- With probability no greater than δ, \mathcal{B} ad event happens.
- Rearrange the equation:

$$
\mathbb{P}[|\nu-\mu| \leq \epsilon]>1-\delta
$$

- With probability at least $1-\delta$, the \mathcal{B} ad event will not happen.

Markov Inequality

Theorem (Markov Inequality)
For any $X>0$ and $\epsilon>0$,

$$
\mathbb{P}[X \geq \epsilon] \leq \frac{\mathbb{E}[X]}{\epsilon}
$$

$$
\begin{aligned}
\epsilon \mathbb{P}[X \geq \epsilon] & =\epsilon \int_{\epsilon}^{\infty} p(x) d x \\
& =\int_{\epsilon}^{\infty} \epsilon p(x) d x \\
& \leq \int_{\epsilon}^{\infty} x p(x) d x \\
& \leq \int_{0}^{\infty} x p(x) d x=\mathbb{E}[X]
\end{aligned}
$$

Chebyshev Inequality

Theorem (Chebyshev Inequality)
Let X_{1}, \ldots, X_{N} be i.i.d. with $\mathbb{E}\left[X_{n}\right]=\mu$ and $\operatorname{Var}\left[X_{n}\right]=\sigma^{2}$. Define

$$
\nu=\frac{1}{N} \sum_{n=1}^{N} X_{n} .
$$

Then,

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq \frac{\sigma^{2}}{N \epsilon^{2}}
$$

$$
\mathbb{P}\left[|\nu-\mu|^{2}>\epsilon^{2}\right] \underbrace{\frac{\mathbb{E}\left[|\nu-\mu|^{2}\right]}{\epsilon^{2}}}_{\text {Markov }} \underbrace{=\frac{\operatorname{Var}[\nu]}{\epsilon^{2}}}_{\mathbb{E}\left[(\nu-\mu)^{2}\right]=\operatorname{var}[\nu]} \underbrace{=\frac{\sigma^{2}}{N \epsilon^{2}}}_{\operatorname{var}[\nu]=\frac{\sigma^{2}}{N}} .
$$

How Good is Chebyshev Inequality?

Weak Law of Large Number

Theorem (WLLN)
Let X_{1}, \ldots, X_{N} be a sequence of i.i.d. random variables with common mean μ. Let $M_{N}=\frac{1}{N} \sum_{n=1}^{N} X_{n}$. Then, for any $\varepsilon>0$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbb{P}\left[\left|M_{N}-\mu\right|>\varepsilon\right]=0 \tag{1}
\end{equation*}
$$

Remark:

- The limit is outside the probability.
- This means that the probability of the event $\left|M_{N}-\mu\right|>\varepsilon$ is diminishing as $N \rightarrow$.
- But diminishing probability can still have occasions where $\left|M_{N}-\mu\right|>\varepsilon$.
- It just means that these occasions do not happen often.

Strong Law of Large Number

Theorem (SLLN)
Let X_{1}, \ldots, X_{N} be a sequence of i.i.d. random variables with common mean μ. Let $M_{N}=\frac{1}{N} \sum_{n=1}^{N} X_{n}$. Then, for any $\varepsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left[\lim _{N \rightarrow \infty}\left|M_{N}-\mu\right|>\varepsilon\right]=0 \tag{2}
\end{equation*}
$$

Remark:

- The limit is inside the probability.
- We need to analyze the limiting object $\lim _{N \rightarrow \infty}\left|M_{N}-\mu\right|$
- This object may or may not exist. This object is another random variable.
- The probability is measuring the event that this limiting object will deviate significantly from ε
- There is no "occasional" outliers.

