ECE595 / STAT598: Machine Learning I
 Lecture 23.2: Probability Inequality - Advance Inequalities I

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University
PURDUE

Outline

- Lecture 22 Is Learning Feasible?
- Lecture 23 Probability Inequality
- Lecture 24 Probably Approximate Correct

Today's Lecture:

- Basic Inequalities
- Markov and Chebyshev
- Interpreting the results
- Advance Inequalities
- Chernoff inequality
- Hoeffding inequality

Hoeffding Inequality

Let us revisit the Bad event:

$$
\begin{aligned}
\mathbb{P}[|\nu-\mu| \geq \epsilon] & =\mathbb{P}[\nu-\mu \geq \epsilon \quad \text { or } \quad \nu-\mu \leq-\epsilon] \\
& \leq \underbrace{\mathbb{P}[\nu-\mu \geq \epsilon]}_{\leq A}+\underbrace{\mathbb{P}[\nu-\mu \leq-\epsilon]}_{\leq A}, \quad \text { Union bound } \\
& \leq 2 A, \quad \text { (What is } A ? \text { To be discussed.) }
\end{aligned}
$$

Theorem (Hoeffding Inequality)
Let X_{1}, \ldots, X_{N} be random variables with $0 \leq X_{n} \leq 1$, then

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \underbrace{e^{-2 \epsilon^{2} N}}_{=A}
$$

The e-trick + Markov Inequality

Let us check one side:

$$
\begin{aligned}
\mathbb{P}[\nu-\mu \geq \epsilon] & =\mathbb{P}\left[\frac{1}{N} \sum_{n=1}^{N} X_{n}-\mu \geq \epsilon\right]=\mathbb{P}\left[\sum_{n=1}^{N}\left(X_{n}-\mu\right) \geq \epsilon N\right] \\
& =\mathbb{P}\left[e^{s \sum_{n=1}^{N}\left(X_{n}-\mu\right)} \geq e^{s \epsilon N}\right], \quad \forall s>0 \\
& \leq \frac{\mathbb{E}\left[e^{s \sum_{n=1}^{N}\left(X_{n}-\mu\right)}\right]}{e^{s \epsilon N}}, \quad \text { Markov Inequality } \\
& =\left(\frac{\mathbb{E}\left[e^{s\left(X_{n}-\mu\right)}\right]}{e^{s \epsilon}}\right)^{N}, \quad \text { Independence }
\end{aligned}
$$

If we let $Z_{n}=X_{n}-\mu$, then

$$
\mathbb{E}\left[e^{s\left(X_{n}-\mu\right)}\right]=M_{Z_{n}}(s)=\text { MGF of } Z_{n} .
$$

Hoeffding Lemma

So now we have

$$
\mathbb{P}[\nu-\mu \geq \epsilon] \leq\left(\frac{\mathbb{E}\left[e^{s\left(X_{n}-\mu\right)}\right]}{e^{s \epsilon}}\right)^{N}
$$

Lemma (Hoeffding Lemma)
If $a \leq X_{n} \leq b$, then

$$
\mathbb{E}\left[e^{s\left(X_{n}-\mu\right)}\right] \leq e^{\frac{s^{2}(b-a)^{2}}{8}}
$$

This leads to

$$
\begin{aligned}
\mathbb{P}[\nu-\mu \geq \epsilon] & =\left(\frac{\mathbb{E}\left[e^{s\left(X_{n}-\mu\right)}\right]}{e^{s \epsilon}}\right)^{N} \\
& \leq\left(\frac{e^{\frac{s^{2}}{8}}}{e^{s \epsilon}}\right)^{N}=e^{\frac{s^{2} N}{8}-s \epsilon N}, \quad \forall s>0
\end{aligned}
$$

Minimization

Finally, we arrive at:

$$
\mathbb{P}[\nu-\mu \geq \epsilon] \leq e^{\frac{s^{2} N}{8}-s \epsilon N}
$$

Since holds for all $s>0$, in particular it holds for the minimizer:

$$
\mathbb{P}[\nu-\mu \geq \epsilon] \leq e^{\frac{s_{\min }^{2} N}{8}-s_{\min } \epsilon N}=\min _{s>0}\left\{e^{\frac{s^{2} N}{8}-s \epsilon N}\right\}
$$

Minimizing the exponent gives: $\frac{d}{d s}\left\{\frac{s^{2} N}{8}-s \epsilon N\right\}=\frac{s N}{4}-\epsilon N=0$. So $s=4 \epsilon$.

$$
\mathbb{P}[\nu-\mu \geq \epsilon] \leq e^{\frac{(4 \epsilon)^{2} N}{8}-(4 \epsilon) \epsilon N}=e^{-2 \epsilon^{2} N}
$$

Hoeffding Inequality

Theorem (Hoeffding Inequality)
Let X_{1}, \ldots, X_{N} be random variables with $0 \leq X_{n} \leq 1$, then

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N}
$$

Compare Hoeffding and Chebyshev

Chebyshev:

Hoeffding:

$$
\mathbb{P}[|\nu-\mu| \geq \epsilon] \leq \frac{\sigma^{2}}{N \epsilon^{2}}
$$

$$
\mathbb{P}[|\nu-\mu| \geq \epsilon] \leq 2 e^{-2 \epsilon^{2} N}
$$

Both are in the form of

$$
\mathbb{P}[|\nu-\mu| \geq \epsilon] \leq \delta
$$

Equivalent to: For probability at least $1-\delta$, we have

$$
\mu-\epsilon \leq \nu \leq \mu+\epsilon
$$

Error bar / Confidence interval of ν.

$$
\delta=\frac{\sigma^{2}}{N \epsilon^{2}} \Rightarrow \epsilon=\frac{\sigma}{\sqrt{\delta N}} \quad \delta=2 e^{-2 \epsilon^{2} N} \Rightarrow \epsilon=\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}}
$$

Example

Chebyshev: For probability at least $1-\delta$, we have

$$
\mu-\frac{\sigma}{\sqrt{\delta N}} \leq \nu \leq \mu+\frac{\sigma}{\sqrt{\delta N}}
$$

Hoeffding: For probability at least $1-\delta$, we have

$$
\mu-\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}} \leq \nu \leq \mu+\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}}
$$

Example:

- Alex: I have data X_{1}, \ldots, X_{N}. I want to estimate μ. How many data points N do I need?
- Bob: How much δ can you tolerate?
- Alex: Alright. I only have limited number of data points. How good my estimate is? (ϵ)
- Bob: How many data points N do you have?

Example

Chebyshev: For probability at least $1-\delta$, we have

$$
\mu-\frac{\sigma}{\sqrt{\delta N}} \leq \nu \leq \mu+\frac{\sigma}{\sqrt{\delta N}}
$$

Hoeffding: For probability at least $1-\delta$, we have

$$
\mu-\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}} \leq \nu \leq \mu+\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}}
$$

Let $\delta=0.01, N=10000, \sigma=1$.

$$
\epsilon=\frac{\sigma}{\sqrt{\delta N}}=0.1
$$

$$
\epsilon=\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}}=0.016
$$

Let $\delta=0.01, \epsilon=0.01, \sigma=1$.

$$
N \geq \frac{\sigma^{2}}{\epsilon^{2} \delta}=1,000,000 . \quad N \geq \frac{\log \frac{2}{\delta}}{2 \epsilon^{2}} \approx 26,500
$$

