ECE595 / STAT598: Machine Learning I Lecture 23.3: Probability Inequality - Advance Inequalities II

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

- Lecture 22 Is Learning Feasible?
- Lecture 23 Probability Inequality
- Lecture 24 Probably Approximate Correct

Today's Lecture:

- Basic Inequalities
 - Markov and Chebyshev
 - Interpreting the results
- Advance Inequalities
 - Chernoff inequality
 - Hoeffding inequality

Hoeffding Inequality

Let us revisit the Bad event:

$$\begin{split} \mathbb{P}[|\nu-\mu| \geq \epsilon] &= \mathbb{P}[\nu-\mu \geq \epsilon \quad \text{or} \quad \nu-\mu \leq -\epsilon] \\ &\leq \underbrace{\mathbb{P}[\nu-\mu \geq \epsilon]}_{\leq A} + \underbrace{\mathbb{P}[\nu-\mu \leq -\epsilon]}_{\leq A}, \qquad \text{Union bound} \\ &\leq 2A, \qquad \text{(What is A? To be discussed.)} \end{split}$$

Theorem (Hoeffding Inequality)

Let X_1, \ldots, X_N be random variables with $0 \le X_n \le 1$, then

$$\mathbb{P}\left[|\nu - \mu| > \epsilon\right] \le 2 \underbrace{\mathrm{e}^{-2\epsilon^2 N}}_{=A}$$

The *e*-trick + Markov Inequality

Let us check one side:

$$\mathbb{P}[\nu - \mu \ge \epsilon] = \mathbb{P}\left[\frac{1}{N} \sum_{n=1}^{N} X_n - \mu \ge \epsilon\right] = \mathbb{P}\left[\sum_{n=1}^{N} (X_n - \mu) \ge \epsilon N\right]$$

$$= \mathbb{P}\left[e^{s \sum_{n=1}^{N} (X_n - \mu)} \ge e^{s\epsilon N}\right], \quad \forall s > 0$$

$$\le \frac{\mathbb{E}\left[e^{s \sum_{n=1}^{N} (X_n - \mu)}\right]}{e^{s\epsilon N}}, \quad \text{Markov Inequality}$$

$$= \left(\frac{\mathbb{E}\left[e^{s(X_n - \mu)}\right]}{e^{s\epsilon}}\right)^N, \quad \text{Independence}$$

If we let $Z_n = X_n - \mu$, then

$$\mathbb{E}[e^{s(X_n-\mu)}]=M_{Z_n}(s)=\mathsf{MGF}\ \mathsf{of}\ Z_n.$$

Hoeffding Lemma

So now we have

$$\mathbb{P}[\nu - \mu \ge \epsilon] \le \left(\frac{\mathbb{E}\left[e^{s(X_n - \mu)}\right]}{e^{s\epsilon}}\right)^{N}$$

Lemma (Hoeffding Lemma)

If $a \leq X_n \leq b$, then

$$\mathbb{E}\left[e^{s(X_n-\mu)}\right] \leq e^{\frac{s^2(b-a)^2}{8}}$$

This leads to

$$\mathbb{P}[\nu - \mu \ge \epsilon] = \left(\frac{\mathbb{E}\left[e^{s(X_n - \mu)}\right]}{e^{s\epsilon}}\right)^N$$

$$\le \left(\frac{e^{\frac{s^2}{8}}}{e^{s\epsilon}}\right)^N = e^{\frac{s^2N}{8} - s\epsilon N}, \quad \forall s > 0.$$

Minimization

Finally, we arrive at:

$$\mathbb{P}[\nu - \mu \ge \epsilon] \le e^{\frac{s^2 N}{8} - s\epsilon N}.$$

Since holds for all s > 0, in particular it holds for the minimizer:

$$\mathbb{P}[\nu - \mu \geq \epsilon] \leq \mathrm{e}^{\frac{\mathsf{s}_{\min}^{2}N}{8} - \mathsf{s}_{\min}\epsilon N} = \min_{\mathsf{s} > 0} \left\{ \mathrm{e}^{\frac{\mathsf{s}^{2}N}{8} - \mathsf{s}\epsilon N} \right\}$$

Minimizing the exponent gives: $\frac{d}{ds} \left\{ \frac{s^2 N}{8} - s \epsilon N \right\} = \frac{sN}{4} - \epsilon N = 0$. So $s = 4\epsilon$.

$$\mathbb{P}[\nu - \mu \ge \epsilon] \le e^{\frac{(4\epsilon)^2 N}{8} - (4\epsilon)\epsilon N} = e^{-2\epsilon^2 N}.$$

Hoeffding Inequality

Theorem (Hoeffding Inequality)

Let X_1, \ldots, X_N be random variables with $0 \le X_n \le 1$, then

$$\mathbb{P}\left[|\nu - \mu| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$$

Compare Hoeffding and Chebyshev

Chebyshev:

Hoeffding:

$$\mathbb{P}\left[|\nu - \mu| \ge \epsilon\right] \le \frac{\sigma^2}{\mathsf{N}\epsilon^2}.$$

$$\mathbb{P}\left[|\nu - \mu| \ge \epsilon\right] \le 2e^{-2\epsilon^2 N}.$$

Both are in the form of

$$\mathbb{P}\left[|\nu - \mu| \ge \epsilon\right] \le \delta.$$

Equivalent to: For probability at least $1 - \delta$, we have

$$\mu - \epsilon \le \nu \le \mu + \epsilon$$
.

Error bar / **Confidence interval** of ν .

$$\delta = \frac{\sigma^2}{N\epsilon^2} \implies \epsilon = \frac{\sigma}{\sqrt{\delta N}}$$

$$\delta = 2e^{-2\epsilon^2N} \ \Rightarrow \ \epsilon = \sqrt{\frac{1}{2N}\log\frac{2}{\delta}}$$

Example

Chebyshev: For probability at least $1 - \delta$, we have

$$\mu - \frac{\sigma}{\sqrt{\delta N}} \le \nu \le \mu + \frac{\sigma}{\sqrt{\delta N}}.$$

Hoeffding: For probability at least $1 - \delta$, we have

$$\mu - \sqrt{\frac{1}{2N}\log\frac{2}{\delta}} \leq \nu \leq \mu + \sqrt{\frac{1}{2N}\log\frac{2}{\delta}}.$$

Example:

- Alex: I have data X_1, \ldots, X_N . I want to estimate μ . How many data points N do I need?
- Bob: How much δ can you tolerate?
- Alex: Alright. I only have limited number of data points. How good my estimate is? (ϵ)
- Bob: How many data points N do you have?

Example

Chebyshev: For probability at least $1 - \delta$, we have

$$\mu - \frac{\sigma}{\sqrt{\delta N}} \le \nu \le \mu + \frac{\sigma}{\sqrt{\delta N}}.$$

Hoeffding: For probability at least $1 - \delta$, we have

$$\mu - \sqrt{\frac{1}{2N}\log\frac{2}{\delta}} \leq \nu \leq \mu + \sqrt{\frac{1}{2N}\log\frac{2}{\delta}}.$$

Let $\delta = 0.01$, N = 10000, $\sigma = 1$.

$$\epsilon = \frac{\sigma}{\sqrt{\delta N}} = 0.1$$

$$\epsilon = \sqrt{\frac{1}{2N}\log\frac{2}{\delta}} = 0.016$$

Let $\delta = 0.01$, $\epsilon = 0.01$, $\sigma = 1$.

$$N \ge \frac{\sigma^2}{\epsilon^2 \delta} = 1,000,000.$$

$$N \geq \frac{\log \frac{2}{\delta}}{2\epsilon^2} \approx 26,500.$$

Reading List

- Abu-Mustafa, Learning from Data, Chapter 2.
- Martin Wainwright, High Dimensional Statistics, Cambridge University Press 2019. (Chapter 2)
- Cornell Note, https://www.cs.cornell.edu/~sridharan/concentration.pdf
- CMU Note, http://www.stat.cmu.edu/~larry/=sml/Concentration.pdf
- Stanford Note, http://cs229.stanford.edu/extra-notes/hoeffding.pdf