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Outline

@ Lecture 22 Is Learning Feasible?
@ Lecture 23 Probability Inequality
@ Lecture 24 Probably Approximate Correct

Today’s Lecture:
@ Basic Inequalities

e Markov and Chebyshev
e Interpreting the results

@ Advance Inequalities

o Chernoff inequality
o Hoeffding inequality



-
Hoeffding Inequality

Let us revisit the Bad event:

Pllv—pl>e=Prv—pnp>e or v—pu<—¢
<Pv—p>e +Plv—p<—¢, Union bound
<A <A

< 2A, (What is A? To be discussed.)

Theorem (Hoeffding Inequality)
Let Xi,...,Xn be random variables with 0 < X, < 1, then

Pllv —p| > ¢ < 2e 2N
=A
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The e-trick + Markov Inequality

Let us check one side:

N N
1
P[VMZG]:P[NZXHHZEI =P Z(X,,—u)>eN
n=1 n=1
=P [es Z[’:’:l(XnilU/) 2 eSGNj| , Vs >0

E [es Zﬁ’:l(Xn—u)}

< e , Markov Inequality
E [GS(Xn—M)] N
=|— , Independence
e56

If we let Z, = X, — p, then
E[es*"~M] = My, (s) = MGF of Z,.
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Hoeffding Lemma

So now we have

E [esom] | "
P[V — U 2 E] é T
Lemma (Hoeffding Lemma)
If a< X, < b, then

52(b73)2

E {es(xru)} <e s

This leads to
N
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Phu2d=<[éx]
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Minimization
Finally, we arrive at:
52N N
Pv—pu>e <es >N

Since holds for all s > 0, in particular it holds for the minimizer:

Smin2N - eN . 2N N
Plv—p>e <e s MmN =minse 5 s
s>0

Minimizing the exponent gives: % {% seN} —eN=0. So
s =A4e.

(42N
P[V —u > e] < e g —(4e)eN _ e—262N'



-
Hoeffding Inequality

Theorem (Hoeffding Inequality)
Let Xq,...,Xn be random variables with 0 < X,, < 1, then

Pllv — pl > ] < 272N

Chebyshev

X Hoeffding

v



Compare Hoeffding and Chebyshev

Chebyshev: Hoeffding:
o2

_0e2
N Pllv — p| > ¢ <2e 2N,

Plly —pl = € <

Both are in the form of

Plly -l > d <.
Equivalent to: For probability at least 1 — §, we have

p—e<v<pu-+e

Error bar / Confidence interval of v.

(o2
(5 = — = = — —
Ne T 5N oN 8§



Example

Chebyshev: For probability at least 1 — 9, we have

g
- — <p+—
It \/W <p F
Hoeffding: For probability at least 1 — ¢, we have
L log 2 <v<u+ L lo 2
RV aon 85 =" =HT\ N 85
Example:
o Alex: | have data Xi,..., Xy. | want to estimate u. How many data

points N do | need?

@ Bob: How much § can you tolerate?

@ Alex: Alright. | only have limited number of data points. How good
my estimate is? (¢)

@ Bob: How many data points N do you have?



Example
Chebyshev: For probability at least 1 — 9, we have

[ \/% Sv<p+ \/ﬁ
Hoeffding: For probability at least 1 — §, we have

Let 6 = 0.01, N =10000, o = 1.

— iIog<y< + iIog
H=\on %8s =V =HT\ N 85

g

=01
VON
Let § =0.01, e =0.01, 0 = 1.
2

g
N > —— = 1,000, 000.
_62(5 Y Y
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Reading List

@ Abu-Mustafa, Learning from Data, Chapter 2.

@ Martin Wainwright, High Dimensional Statistics, Cambridge
University Press 2019. (Chapter 2)

@ Cornell Note,
https://www.cs.cornell.edu/~sridharan/concentration.pdf

e CMU Note,
http://wuw.stat.cmu.edu/~larry/=sml/Concentration.pdf

@ Stanford Note,
http://cs229.stanford.edu/extra-notes/hoeffding.pdf
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