# ECE595 / STAT598: Machine Learning I Lecture 18.2: Back Propagation 

Spring 2020<br>Stanley Chan<br>School of Electrical and Computer Engineering Purdue University

PURDUE

## Outline

## Discriminative Approaches

- Lecture 16 Perceptron 1: Definition and Basic Concepts
- Lecture 17 Perceptron 2: Algorithm and Property
- Lecture 18 Multi-Layer Perceptron: Back Propagation

This lecture: Multi-Layer Perceptron: Back Propagation

- Multi-Layer Perceptron
- Hidden Layer

Madrix Representation

- Back Propagation
- Chain Rule
- 4 Fundamental Equations
- Algorithm
- Interpretation


## Back Propagation: A 20-Minute Tour

- You will be able to find A LOT OF blogs on the internet discussing how back propagation is being implemented.
- Some are mystifying back propagation
- Some literally just teach you the procedure of back propagation without telling you the intuition
- I find the following online book by Mike Nielsen fairly well-written
- http://neuralnetworksanddeeplearning.com/
- The following slides are written based on Nielsen's book
- We will not go into great details
- The purpose to get you exposed to the idea, and de-mystify back propagation
- As stated before, back propagation is chain rule + very careful book keeping


## Back Propagation

- Here is the loss function you want to minimize:

$$
J\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{L}\right)=\sum_{i=1}^{N}\left\|\sigma\left(\boldsymbol{W}_{L}^{T} \ldots \sigma\left(\boldsymbol{W}_{2}^{T} \sigma\left(\boldsymbol{W}_{1}^{T} \boldsymbol{x}_{i}\right)\right)\right)-\boldsymbol{y}_{i}\right\|^{2}
$$

- You have a set of nonlinear activation functions, usually the sigmoid.
- To optimize, you need gradient descent. For example, for $\boldsymbol{W}_{1}$

$$
\boldsymbol{W}_{1}^{t+1}=\boldsymbol{W}_{1}^{t}-\alpha \nabla J\left(\boldsymbol{W}_{1}^{t}\right)
$$

- But you need to do this for all $\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{L}$.
- And there are lots of sigmoid functions.
- Let us do the brute force.
- And this is back-propagation. (Really? Yes...)


## Let us See an Example

- Let us look at two layers

$$
J\left(\boldsymbol{W}_{1}, \boldsymbol{W}_{2}\right)=\|\underbrace{\|\left(\boldsymbol{W}_{2}^{T} \sigma\left(\boldsymbol{W}_{1}^{T} \boldsymbol{x}\right)\right)}_{\mathbf{a}_{2}}-\boldsymbol{y}\|^{2}
$$

- Let us go backward:

$$
\frac{\partial J}{\partial \boldsymbol{W}_{2}}=\frac{\partial J}{\partial \mathbf{a}_{2}} \cdot \frac{\partial \mathbf{a}_{2}}{\partial \boldsymbol{W}_{2}}
$$

- Now, what is $\boldsymbol{a}_{2}$ ?

$$
\boldsymbol{a}_{2}=\sigma(\underbrace{\left.\boldsymbol{W}_{2}^{T} \sigma\left(\boldsymbol{W}_{1}^{T} \boldsymbol{x}\right)\right)}_{\mathbf{z}_{2}}
$$

So let us compute:

$$
\frac{\partial \mathbf{a}_{2}}{\partial \boldsymbol{W}_{2}}=\frac{\partial \mathbf{a}_{2}}{\partial \boldsymbol{z}_{2}} \cdot \frac{\partial \boldsymbol{z}_{2}}{\partial \boldsymbol{W}_{2}}
$$

## Let us See an Example

$$
J\left(\boldsymbol{W}_{1}, \boldsymbol{W}_{2}\right)=\|\sigma(\boldsymbol{W}_{2}^{T} \underbrace{\sigma\left(\boldsymbol{W}_{1}^{T} \boldsymbol{x}\right)}_{\boldsymbol{a}_{1}})-\boldsymbol{y}\|^{2}
$$

- How about $\boldsymbol{W}_{1}$ ? Again, let us go backward:

$$
\frac{\partial J}{\partial \boldsymbol{W}_{1}}=\frac{\partial J}{\partial \mathbf{a}_{2}} \cdot \frac{\partial \mathbf{a}_{2}}{\partial \boldsymbol{W}_{1}}
$$

- But you can now repeat the calculation as follows (Let $\boldsymbol{z}_{1}=\boldsymbol{W}_{1}^{T} \boldsymbol{x}$ )

$$
\begin{aligned}
\frac{\partial \mathbf{a}_{2}}{\partial \boldsymbol{W}_{1}} & =\frac{\partial \boldsymbol{a}_{2}}{\partial \boldsymbol{a}_{1}} \frac{\partial \boldsymbol{a}_{1}}{\partial \boldsymbol{W}} \\
& =\frac{\partial \mathbf{a}_{2}}{\partial \boldsymbol{a}_{1}} \frac{\partial \mathbf{a}_{1}}{\partial \boldsymbol{z}_{1}} \frac{\partial \boldsymbol{z}_{1}}{\boldsymbol{W}_{1}}
\end{aligned}
$$

- So it is just a very long sequence of chain rule.


## Notations for Back Propagation

- The following notations are based on Nielsen's online book.
- The purpose of doing these is to write down a concise algorithm.


## Weights:


$w_{j k}^{l}$ is the weight from the $k^{\text {th }}$ neuron in the $(l-1)^{\text {th }}$ layer to the $j^{\text {th }}$ neuron in the $l^{\text {th }}$ layer

- $w_{24}^{3}$ : The 3rd layer
- $w_{24}^{3}$ : From 4-th neuron to 2-nd neuron


## Notations for Back Propagation

## Activation and Bias:



- $a_{1}^{3}$ : 3rd layer, 1st activation
- $b_{3}^{2}$ : 2nd layer, 3rd bias
- Here is the relationship. Think of $\sigma\left(\boldsymbol{w}^{\top} \boldsymbol{x}+w_{0}\right)$ :

$$
a_{j}^{\ell}=\sigma\left(\sum_{k} w_{j k}^{\ell} a_{k}^{\ell-1}+b_{j}^{\ell}\right) .
$$

## Understanding Back Propagation

- This is the main equation

$$
a_{j}^{\ell}=\sigma \underbrace{\left(\sum_{k} w_{j k}^{\ell} a_{k}^{\ell-1}+b_{j}^{\ell}\right)}_{z_{j}^{\ell}}, \text { or } a_{j}^{\ell}=\sigma\left(z_{j}^{\ell}\right)
$$

- $a_{j}^{\ell}$ : activation, $z_{j}^{\ell}$ : intermediate.

$$
\begin{aligned}
& a_{j}^{l}=\sigma\left(z_{j}^{l}\right)
\end{aligned}
$$

- The loss takes the form of

$$
C=\sum_{j}\left(a_{j}^{L}-y_{j}\right)^{2}
$$

- Think of two-class cross-entropy where each $\boldsymbol{a}^{L}$ is a 2-by- 1 vector



## Error Term

- The error is defined as

$$
\delta_{j}^{\ell}=\frac{\partial C}{\partial z_{j}^{\ell}}
$$



- You can show that at the output,

$$
\delta_{j}^{L}=\frac{\partial C}{\partial a_{j}^{L}} \frac{\partial a_{j}^{L}}{\partial z_{j}^{L}}=\frac{\partial C}{\partial a_{j}^{L}} \sigma^{\prime}\left(z_{j}^{L}\right) .
$$

## 4 Fundamental Equations for Back Propagation

BP Equation 1: For the error in the output layer:

$$
\begin{equation*}
\delta_{j}^{L}=\frac{\partial C}{\partial a_{j}^{L}} \sigma^{\prime}\left(z_{j}^{L}\right) \tag{BP-1}
\end{equation*}
$$

- First term: $\frac{\partial C}{\partial a_{j}^{L}}$ is rate of change w.r.t. $a_{j}^{L}$
- Second term: $\sigma^{\prime}\left(z_{j}^{L}\right)=$ rate of change w.r.t. $z_{j}^{L}$.
- So it is just chain rule.
- Example: If $C=\frac{1}{2} \sum_{j}\left(y_{j}-a_{j}^{L}\right)^{2}$, then

$$
\frac{\partial C}{\partial a_{j}^{L}}=\left(a_{j}^{L}-y_{j}\right)
$$

- Matrix-vector form: $\delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right)$


## 4 Fundamental Equations for Back Propagation

BP Equation 2: An equation for the error $\delta^{\ell}$ in terms of the error in the next layer, $\delta^{\ell+1}$

$$
\begin{equation*}
\boldsymbol{\delta}^{\ell}=\left(\left(\boldsymbol{w}^{\ell+1}\right)^{T} \boldsymbol{\delta}^{\ell+1}\right) \odot \sigma^{\prime}\left(\boldsymbol{z}^{\ell}\right) \tag{BP-2}
\end{equation*}
$$

- You start with $\boldsymbol{\delta}^{\ell+1}$. Take weighted average $\boldsymbol{w}^{\ell+1}$.

- (BP-1) and (BP-2) can help you determine error at any layer.


## 4 Fundamental Equations for Back Propagation

Equation 3: An equation for the rate of change of the cost with respect to any bias in the network.

$$
\begin{equation*}
\frac{\partial C}{\partial b_{j}^{\ell}}=\delta_{j}^{\ell} \tag{BP-3}
\end{equation*}
$$

- Good news: We have already known $\delta_{j}^{\ell}$ from Equation 1 na dn 2.
- So computing $\frac{\partial C}{\partial b_{j}^{e}}$ is easy.

Equation 4: An equation for the rate of change of the cost with respect to any weight in the network.

$$
\begin{equation*}
\frac{\partial C}{\partial w_{j k}^{\ell}}=a_{k}^{\ell-1} \delta_{j}^{\ell} \tag{BP-4}
\end{equation*}
$$

- Again, everything on the right is known. So it is easy to compute.


## Back Propagation Algorithm

- Below is a very concise summary of the BP algorithm

1. Input $x$ : Set the corresponding activation $a^{1}$ for the input layer.
2. Feedforward: For each $l=2,3, \ldots, L$ compute

$$
z^{l}=w^{l} a^{l-1}+b^{l} \text { and } a^{l}=\sigma\left(z^{l}\right) .
$$

3. Output error $\delta^{L}$ : Compute the vector $\delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right)$.
4. Backpropagate the error: For each $l=L-1, L-2, \ldots, 2$ compute $\delta^{l}=\left(\left(w^{l+1}\right)^{T} \delta^{l+1}\right) \odot \sigma^{\prime}\left(z^{l}\right)$.
5. Output: The gradient of the cost function is given by

$$
\frac{\partial C}{\partial w_{j k}^{l}}=a_{k}^{l-1} \delta_{j}^{l} \text { and } \frac{\partial C}{\partial b_{j}^{l}}=\delta_{j}^{l} .
$$

## Step 2: Feed Forward Step

- Let us take a closer look at Step 2
- The feed forward step computes the intermediate variables and the activations

$$
\begin{aligned}
& \boldsymbol{z}^{\ell}=\left(\boldsymbol{w}^{\ell}\right)^{T} \boldsymbol{a}^{\ell-1}+b^{\ell} \\
& \boldsymbol{a}^{\ell}=\sigma\left(\boldsymbol{z}^{\ell}\right)
\end{aligned}
$$



Step 3: Output Error

- Let us take a closer look at Step 3
- The output error is given by (BP-1)

$$
\delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right)
$$



Step 4: Output Error

- Let us take a closer look at Step 4
- The error back propagation is given by (BP-2)

$$
\boldsymbol{\delta}^{\ell}=\left(\left(\boldsymbol{w}^{\ell+1}\right)^{T} \boldsymbol{\delta}^{\ell+1}\right) \odot \sigma^{\prime}\left(\boldsymbol{z}^{\ell}\right) .
$$



## Summary of Back Propagation

- There is no dark magic behind back propagation
- It is literally just chain rule
- You need to do this chain rule very systematically and carefully
- Then you can derive the back propagation steps
- Nielsen wrote in his book that
... How backpropagation could have been discovered in the first place? In fact, if you follow the approach I just sketched you will discover a proof of backpropagation...You make those simplifications, get a shorter proof, and write that out....The result after a few iterations is the one we saw earlier, short but somewhat obscure...
- Most deep learning libraries have built-in back propagation steps.
- You don't have to implement it yourself, but you need to know what's behind it.


## Reading List

- Michael Nielsen, Neural Networks and Deep Learning, http://neuralnetworksanddeeplearning.com/chap2.html
- Very well written. Easy to follow.
- Duda, Hart, Stork, Pattern Classification, Chapter 5
- Classical treatment. Comprehensive. Readable.
- Bishop, Pattern Recognition and Machine Learning, Chapter 5
- Somewhat Bayesian. Good for those who like statistics
- Stanford CS 231N, http://cs231n.stanford.edu/slides/2017/ cs231n_2017_lecture4.pdf
- Good numerical example.
- CMU https://www.cs.cmu.edu/~mgormley/courses/ 10601-s17/slides/lecture20-backprop.pdf
- Cornell https://www.cs.cornell.edu/courses/cs5740/2016sp/ resources/backprop.pdf

