ECE595 / STAT598: Machine Learning I
 Lecture 24.2: Probably Approximately Correct PAC Framework

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University
PURDUE
U N I V ERSITY

Outline

- Lecture 22 Is Learning Feasible?
- Lecture 23 Probability Inequality
- Lecture 24 Probably Approximate Correct

Today's Lecture:

- Two ingredients of generalization
- Training and testing error
- Hoeffding inequality
- Interpreting the bound
- PAC Framework
- PAC learnable
- Confidence and accuracy
- Example

Accuracy and Confidence

Recall the equation

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 e^{-2 \epsilon^{2} N}
$$

- $\delta=2 e^{-2 \epsilon^{2} N}$. confidence: $1-\delta$.
- $\epsilon=\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}}$. accuracy: $1-\epsilon$.
- Then the equation becomes

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq \delta
$$

- which is equivalent to

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \leq \epsilon\right]>1-\delta
$$

Probably Approximately Correct

- Probably: Quantify error using probability:

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \leq \epsilon\right] \geq 1-\delta
$$

- Approximately Correct: In-sample error is an approximation of the out-sample error:

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \leq \epsilon\right] \geq 1-\delta
$$

- If you can find an algorithm \mathcal{A} such that for any ϵ and δ, there exists an N which can make the above inequality holds, then we say that the target function is PAC-learnable.
- The following example is taken from Mohri et al. Foundation of Machine Learning, Example 2.4.

Example: Rectangle Classifier

Consider a set of 2D data points.

- The target function is a rectangle R
- Inside R : blue. Outside R : orange. Data is intrinsically separable.
- Goal: Pick a hypothesis rectangle R^{\prime} using the available data point
- Question: Is this problem PAC learnable?

What Shall We Do?

- This question is very general.
- It asks about the nature of the problem.
- We want to show that this problem is indeed PAC learnable.
- To do so, we need to propose an algorithm \mathcal{A} which takes the training data and returns an R^{\prime}, such that for any $\epsilon>0$ and $\delta>0$, there exists an N (which is a function of ϵ and δ) with

$$
\mathbb{P}\left[\left|E_{\text {in }}\left(R^{\prime}\right)-E_{\text {out }}\left(R^{\prime}\right)\right|>\epsilon\right] \leq \delta .
$$

- If we find such algorithm, then the problem is PAC learnable.

Proposed Algorithm

- \mathcal{A} : Give me the data point points, find the tightest rectangle that covers the blue circles.

Intuition

- As N grows, we can find a R^{\prime} which is getting closer and closer to R.
- So for any $\epsilon>0$ and $\delta>0$, it seems possible that as long as N is large enough we will be able to make training error close to testing error.
- See Appendix for proof.

Summary

- Not all problems are learnable.
- Those that are learnable require training and testing samples are correlated.
- Then Hoeffding inequality applies

$$
\mathbb{P}\left[\left|E_{\text {out }}\left(R^{\prime}\right)-E_{\text {in }}\left(R^{\prime}\right)\right|>\epsilon\right] \leq \delta
$$

- For any accuracy ϵ and any confidence δ, if you can find an algorithm \mathcal{A} such that as long as N is large enough the above inequality can be proved, then the target function is PAC learnable.
- Next time: Look at the hypothesis set \mathcal{H}.

Reading List

- Yasar Abu-Mustafa, Learning from Data, Chapter 1.3, 2.1.
- Mehryar Mohri, Foundations of Machine Learning, Chapter 2.1.
- Martin Wainwright, High Dimensional Statistics, Cambridge University Press 2019. (Chapter 2)
- CMU Note https:
//www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture28-pac.pdf
- lowa State Note http://web.cs.iastate.edu/~honavar/pac.pdf
- Princeton Note https://www.cs.princeton.edu/courses/archive/spring08/ cos511/scribe_notes/0211.pdf
- Stanford Note http://cs229.stanford.edu/notes/cs229-notes4.pdf

