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Is Learning Feasible?

Learning can be infeasible.

Recall the example below.

Given the training samples, there is no way you can learn and predict.

You know what you know, and you don’t know what you don’t know.

xn yn g f1 f2 f3 f4
0 0 0 ◦ ◦ ◦ ◦ ◦ ◦
0 0 1 • • • • • •
0 1 0 • • • • • •
0 1 1 ◦ ◦ ◦ ◦ ◦ ◦
1 0 0 • • • • • •
1 0 1 ◦ ◦ ◦ ◦ ◦ ◦
1 1 0 ◦/• ◦ • ◦ •
1 1 1 ◦/• ◦ ◦ • •
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The Power of Probability
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In-Sample Error

Let xn be a training sample

h: Your hypothesis

f : The unknown target function

If h(xn) = f (xn), then say training sample xn is correctly classified.

This will give you the in-sample error

Definition (In-sample Error / Training Error)

Consider a training set D = {x1, . . . , xN}, and a target function f . The in-sample error (or
the training error) of a hypothesis function h ∈ H is the empirical average of {h(xn) 6= f (xn)}:

Ein(h)
def
=

1

N

N∑
n=1

[[h(xn) 6= f (xn)]], (1)

where [[·]] = 1 if the statement inside the bracket is true, and = 0 if the statement is false.
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Out-Sample Error

Let x be a testing sample drawn from p(x)

h: Your hypothesis

f : The unknown target function

If h(x) = f (x), then say testing sample x is correctly classified.

Since x ∼ p(x), you need to compute the probability of error, called the out-sample
error

Definition (Out-sample Error / Testing Error)

Consider an input space X containing elements x drawn from a distribution pX (x), and a
target function f . The out-sample error (or the testing error) of a hypothesis function h ∈ H
is

Eout(h)
def
= P[h(x) 6= f (x)], (2)

where P[·] measures the probability of the statement based on the distribution pX (x).
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Understanding the Errors

Let us take a closer look at these two error:

Ein(h)
def
=

1

N

N∑
n=1

[[h(xn) 6= f (xn)]],

Eout(h)
def
= P[h(x) 6= f (x)],

Both error are functions of the hypothesis h

h is determined by the learning algorithm A
For every h ∈ H, there is a different Ein(h) and Eout(h)

The training samples xn are drawn from p(x)

The testing samples x are also drawn from p(x)

Therefore, P[·] in Eout(h) is evaluated over x ∼ p(x)
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In-sample VS Out-sample

In-Sample Error

Ein(h) =
1

N

N∑
n=1

[[h(xn) 6= f (xn)]]

Out-Sample Error

Eout(h) = P[h(x) 6= f (x)]

= [[h(xn) 6= f (xn)]]︸ ︷︷ ︸
=1

P
{
h(xn) 6= f (xn)

}
+ [[h(xn) = f (xn)]]︸ ︷︷ ︸

=0

(
1− P

{
h(xn) 6= f (xn)

})
= E

{
[[h(xn) 6= f (xn)]]

}
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The Role of p(x)

Learning is feasible if x ∼ p(x)

p(x) says: Training and testing are related

If training and testing are unrelated, then hopeless – the deterministic example shown
previously

If you draw training and testing samples with different bias, then you will suffer



c©Stanley Chan 2020. All Rights Reserved.

A Mathematical Tool

Beside in-sample and out-sample error, we also need a mathematical tool.

Theorem (Hoeffding Inequality)

Let X1, . . . ,XN be random variables with 0 ≤ Xn ≤ 1, then

P [|ν − µ| > ε] ≤ 2e−2ε
2N

We will use Hoeffding inequality to analyze the generalization error

There are many other inequalities that can serve the same purpose

Hoeffding requires 0 ≤ Xn ≤ 1

ν = 1
N

∑N
n=1 Xn is the empirical average

Probability of how close ν compared to µ

ε = tolerance level

N = number of samples
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Applying Hoeffinding Inequality to Our Problem

Xn = [[h(xn) 6= f (xn)]] = one sample training error = either 0 or 1

ν = Eout = 1
N

∑N
n=1 Xn = training error

µ = Ein = testing error
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Applying Hoeffinding Inequality to Our Problem

Therefore, the inequality can be stated as

P [|Ein(h)− Eout(h)| > ε] ≤ 2e−2ε
2N .

N = number of training samples

ε = tolerance level

Hoeffding is applicable because [[h(x) 6= f (x)]] is either 1 or 0.

If you want to be more explicit, then

P
xn∼D

[∣∣∣∣∣ 1

N

N∑
n=1

[[h(xn) 6= f (xn)]]− Eout(h)

∣∣∣∣∣ > ε

]
≤ 2e−2ε

2N .

The probability is evaluated with respect to xn drawn from the dataset D
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Interpreting the Bound

Let us look at the bound again:

P [|Ein(h)− Eout(h)| > ε] ≤ 2e−2ε
2N .

Message 1: You can bound Eout(h) using Ein(h).

Ein(h): You know. Eout(h): You don’t know, but you want to know.

They are close if N is large.

Message 2: The right hand side is independent of h and p(x)

So it is a universal upper bound

Works for any A, any H, any f , and any p(x)




