

2D Valley-Spin Transport in Transition Metal Dichalcogenides

Terry Y.T. Hung, Chin-Sheng Pang, Shengjiao Zhang, Kerem Y. Camsari, Pramey Upadhyaya, <u>Zhihong Chen</u>

School of Electrical and Computer Engineering & Birck Nanotechnology Center Purdue University, West Lafayette, IN 47907

BIRCK NANOTECHNOLOGY CENTER

zhchen@purdue.edu

Spintronics Workshop September 11, 2019

Spin Hall Effect

 \sim

Switching Current of SOT Switching Based Write Unit

IMA on in-plane GSHE

$$J_{C,WRITE} = \frac{2e}{\hbar} \mu_0 M_S H_K t \alpha \left(1 + \frac{H_D}{H_K} \right) \frac{1}{\theta_{SH}}$$

PMA on out-of-plane GSHE

$$J_{C,WRITE} = \frac{2e}{\hbar} \mu_0 M_s H_K t \alpha \frac{1}{\theta_{SH}}$$

IMA switched by in-plane GSHE

 Switching Energy

NEW materials for LogIc, Memory and InTerconnectS

Transition Metal Dichalcogenides (2H – MX₂)

- Spin orbit interaction breaks the spin degeneracy in monolayer TMD.
- Spin polarization is out-of-plane due to in-plane electron motion and in-plane potential gradient asymmetry

NEW materials for LogIc, Memory and InTerconnectS

4

Valley Dependent Spin Splitting in TMDs

K and –K valleys with opposite Berry curvature develop anomalous velocities with opposite directions!

NEW materials for LogIc, Memory and InTerconnectS

אי

Monolayer and Multilayer MoS₂ Characterization

Non-local Measurement Set-up for Valley Current Detection

 $L = 0.5 \mu m$, $L_1 = 4.5 \mu m$, $W_1 = 1 \mu m$, $W = W_2 = 2 \mu m$

T. Hung, et al., Science Advance, 5, eaau6478 (2019)

NEW materials for LogIc, Memory and InTerconnectS

Non-local Measurements of Monolayer and Multi-layer MoS₂

Large non-local Hall voltage measured in monolayer MoS₂

NEW materials for LogIc, Memory and InTerconnectS

Non-local Measurements of Monolayer and Multi-layer MoS₂

Large non-local valley Hall voltage measured in monolayer MoS₂

Temperature Dependence of Non-local Signals

Opposite temperature dependence trends are observed

NEW materials for LogIc, Memory and InTerconnectS

Temperature Dependence of Non-local Signals

Monolayer

Multi-layer

Opposite temperature dependence trends are observed

NEW materials for LogIc, Memory and InTerconnectS

Valley Hall Effect Induced Non-local Resistance

$$R_{nl}(T) \rightarrow R_{nl}(\rho(T), \lambda(T), \theta(T))$$

Temperature [K]

$$R_{nl} = \frac{V_{nl}}{I_{DC}} = \frac{2\rho\lambda W \sinh\left(\frac{W_1}{2\lambda}\right) \sinh\left(\frac{W_2}{2\lambda}\right) \theta^2 e^{-\frac{L}{\lambda}}}{\left(W_1 e^{\frac{W_1}{2\lambda}} + 2\lambda \sinh\left(\frac{W_1}{2\lambda}\right) \theta^2\right) \left(W_2 e^{\frac{W_2}{2\lambda}} + 2\lambda \sinh\left(\frac{W_2}{2\lambda}\right) \theta^2\right)} \quad \begin{array}{c} \theta^2 \ll 1 \\ W_{nl} = \frac{1}{2} \theta^2 \frac{W}{\sigma\lambda} e^{\frac{-L}{\lambda}} \\ \frac{W_{nl}}{\frac{W_{nl}}{\lambda}} \ll 1 \end{array}$$

Valley Hall Effect Induced Non-local Resistance

 \propto

Experiment Empirical

 $R_{nl}(T) \rightarrow R_{nl}(\rho(T), \lambda(T), \theta(T))$

$$R_{nl} = \frac{V_{nl}}{I_{DC}} = \frac{2\rho\lambda W \sinh\left(\frac{W_1}{2\lambda}\right) \sinh\left(\frac{W_2}{2\lambda}\right) \theta^2 e^{-\frac{L}{\lambda}}}{\left(W_1 e^{\frac{W_1}{2\lambda}} + 2\lambda \sinh\left(\frac{W_1}{2\lambda}\right) \theta^2\right) \left(W_2 e^{\frac{W_2}{2\lambda}} + 2\lambda \sinh\left(\frac{W_2}{2\lambda}\right) \theta^2\right)} \xrightarrow{\theta^2 \ll 1} R_{nl} = \frac{1}{2} \theta^2 \frac{W}{\sigma\lambda} e^{-\frac{L}{\lambda}}}{\frac{W_{1,2}}{\lambda} \ll 1}$$

NEW materials for LogIc, Memory and InTerconnectS

Valley Hall Effect Induced Non-local Resistance

NEW materials for LogIc, Memory and InTerconnectS

Large Spin Splitting in WSe₂ Valence Band

Large Spin Splitting in WSe₂ Valence Band

Air Stable P-type Doping for WSe₂ FETs

NEW materials for LogIc, Memory and InTerconnectS

Air Stable P-type Doping for WSe₂ FETs

T. Hung, C.-S. Pang, et. al., submitted (2019)

Electrical Detection of Valley Coupled Spin Currents in WSe₂

NEW materials for LogIc, Memory and InTerconnectS

Nonlocal Spin Valve Measurements for Out-of-Plane Spins

Nonlocal Spin Valve Measurements for Out-of-Plane Spins

Nonlocal Spin Valve Measurements for Out-of-Plane Spins

JSC

Collaborators:

Prof. Moon Kim's group (UT Dallas)

Prof. Robert Wallace's group (UT Dallas)

http://www.purdue.edu/discoverypark/newlimits/index.php

Thank you!

