ECE595 / STAT598: Machine Learning I Lecture 25.1: Generalization Bound - M Hypothesis

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University

Purdue
 UNIVERSITY

Outline

- Lecture 25 Generalization
- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- M Hypothesis
- PAC framework
- Guarantee and Possibility
- The M factor
- Generalization Bound
- H
- f
- Lower and upper limits
- Handling M hypothesis
- A preview

Probably Approximately Correct

- Probably: Quantify error using probability:

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \leq \epsilon\right] \geq 1-\delta
$$

- Approximately Correct: In-sample error is an approximation of the out-sample error:

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \leq \epsilon\right] \geq 1-\delta
$$

- If you can find an algorithm \mathcal{A} such that for any ϵ and δ, there exists an N which can make the above inequality holds, then we say that the target function is PAC-learnable.

Guarantee VS Possibility

Difference between deterministic and probabilistic learning.

- Deterministic:

- "Can \mathcal{D} tell us something certain about f outside \mathcal{D} ?"
- The answer is NO.
- Anything outside \mathcal{D} has uncertainty. There is no way to deal with this uncertainty.
- Probabilistic:
- "Can \mathcal{D} tell us something possibly about f outside \mathcal{D} ?"
- The answer is YES.
- If training and testing have the same distribution $p(\boldsymbol{x})$, then training can say something about testing.
- Assume all samples are independently drawn from $p(\boldsymbol{x})$.

One Hypothesis versus the Final Hypothesis

- In this equation

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 e^{-2 \epsilon^{2} N}
$$

the hypothesis h is fixed.

- This h is chosen before we look at the dataset.
- If h is chosen after we look at the dataset, then Hoeffding is invalid.
- We have to choose a h from \mathcal{H} during the learning process.
- The h we choose depends on \mathcal{D}.
- This h is the final hypothesis g.
- When you need to choose g from h_{1}, \ldots, h_{M}, you need to repeat Hoeffding M times.

The Factor " M "

You can show that

$$
\begin{aligned}
& \left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon \quad \Longrightarrow \quad\left|E_{\text {in }}\left(h_{1}\right)-E_{\text {out }}\left(h_{1}\right)\right|>\epsilon \\
& \text { or }\left|E_{\text {in }}\left(h_{2}\right)-E_{\text {out }}\left(h_{2}\right)\right|>\epsilon \\
& \text { or } \quad\left|E_{\text {in }}\left(h_{M}\right)-E_{\text {out }}\left(h_{M}\right)\right|>\epsilon \text {. }
\end{aligned}
$$

- To have g, you need to consider h_{1}, \ldots, h_{M}
- You don't know which h_{m} to pick; So it is a "OR"
- So there is a sequence of "OR"

The Factor " M "

$$
\begin{aligned}
\mathbb{P}\left\{\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right\} \stackrel{(a)}{\leq} \mathbb{P}\{ & \left|E_{\text {in }}\left(h_{1}\right)-E_{\text {out }}\left(h_{1}\right)\right|>\epsilon \\
& \text { or }\left|E_{\text {in }}\left(h_{2}\right)-E_{\text {out }}\left(h_{2}\right)\right|>\epsilon \\
& \ldots \\
& \text { or } \left.\left|E_{\text {in }}\left(h_{M}\right)-E_{\text {out }}\left(h_{M}\right)\right|>\epsilon\right\} \\
& \stackrel{(b)}{\leq} \sum_{m=1}^{M} \mathbb{P}\left\{\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right|>\epsilon\right\}
\end{aligned}
$$

- We need two identities
- (a) If-statement. $\mathbb{P}[A] \leq \mathbb{P}[B]$ if $A \Rightarrow B$
- (b) Union Bound. $\mathbb{P}[A$ or $B] \leq \mathbb{P}[A]+\mathbb{P}[B]$

The Factor " M "

- Change this equation

$$
\mathbb{P}\left\{\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right\} \leq 2 e^{-2 \epsilon^{2} N}
$$

- to this equation

$$
\mathbb{P}\left\{\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right\} \leq 2 M e^{-2 \epsilon^{2} N}
$$

- So what? M is a constant.
- Bad news: M can be large, or even ∞.
- A linear regression has $M=\infty$.
- Good news: It is possible to bound M.
- We will do it later. Let us look at the interpretation first.

