ECE595 / STAT598: Machine Learning I Lecture 25.1: Generalization Bound - M Hypothesis

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

- Lecture 25 Generalization
- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- M Hypothesis
 - PAC framework
 - Guarantee and Possibility
 - The *M* factor
- Generalization Bound
 - H
 - f
 - Lower and upper limits
- Handling *M* hypothesis
 - A preview

Probably Approximately Correct

• **Probably**: Quantify error using probability:

$$\mathbb{P}\big[\left|E_{\mathrm{in}}(h) - E_{\mathrm{out}}(h)\right| \leq \epsilon\big] \geq 1 - \delta$$

• Approximately Correct: In-sample error is an approximation of the out-sample error:

$$\mathbb{P}\left[|E_{\mathrm{in}}(h) - E_{\mathrm{out}}(h)| \le \epsilon\right] \ge 1 - \delta$$

• If you can find an algorithm A such that for any ϵ and δ , there exists an N which can make the above inequality holds, then we say that the target function is **PAC-learnable**.

Guarantee VS Possibility

Difference between deterministic and probabilistic learning.

- Deterministic:
- "Can \mathcal{D} tell us something *certain* about f outside \mathcal{D} ?"
- The answer is NO.
- ullet Anything outside ${\cal D}$ has uncertainty. There is no way to deal with this uncertainty.
- Probabilistic:
- "Can \mathcal{D} tell us something possibly about f outside \mathcal{D} ?"
- The answer is YES.
- If training and testing have the same distribution p(x), then training can say something about testing.
- Assume all samples are independently drawn from p(x).

One Hypothesis versus the Final Hypothesis

In this equation

$$\mathbb{P}\left[|E_{\rm in}(h) - E_{\rm out}(h)| > \epsilon\right] \le 2e^{-2\epsilon^2 N},$$

the hypothesis h is fixed.

- This h is chosen **before** we look at the dataset.
- If h is chosen **after** we look at the dataset, then Hoeffding is invalid.
- We have to choose a h from \mathcal{H} during the learning process.
- The h we choose depends on \mathcal{D} .
- This h is the final hypothesis g.
- When you need to choose g from h_1, \ldots, h_M , you need to repeat Hoeffding M times.

The Factor "M"

You can show that

$$|E_{
m in}(g)-E_{
m out}(g)|>\epsilon \qquad \Longrightarrow \qquad |E_{
m in}(h_1)-E_{
m out}(h_1)|>\epsilon \$$
 or $|E_{
m in}(h_2)-E_{
m out}(h_2)|>\epsilon \$ $\cdots \$ or $|E_{
m in}(h_M)-E_{
m out}(h_M)|>\epsilon .$

- To have g, you need to consider h_1, \ldots, h_M
- You don't know which h_m to pick; So it is a "OR"
- So there is a sequence of "OR"

The Factor "M"

$$\mathbb{P}\Big\{ \left| E_{\mathrm{in}}(g) - E_{\mathrm{out}}(g) \right| > \epsilon \Big\} \overset{(a)}{\leq} \mathbb{P}\Big\{ \quad \left| E_{\mathrm{in}}(h_1) - E_{\mathrm{out}}(h_1) \right| > \epsilon$$

$$\qquad \qquad \text{or} \quad \left| E_{\mathrm{in}}(h_2) - E_{\mathrm{out}}(h_2) \right| > \epsilon$$

$$\qquad \qquad \cdots$$

$$\qquad \qquad \qquad \text{or} \quad \left| E_{\mathrm{in}}(h_M) - E_{\mathrm{out}}(h_M) \right| > \epsilon \quad \Big\}$$

$$\overset{(b)}{\leq} \sum_{m=1}^{M} \mathbb{P}\Big\{ \quad \left| E_{\mathrm{in}}(h_m) - E_{\mathrm{out}}(h_m) \right| > \epsilon \quad \Big\}$$

- We need two identities
- (a) If-statement. $\mathbb{P}[A] \leq \mathbb{P}[B]$ if $A \Rightarrow B$
- (b) Union Bound. $\mathbb{P}[A \text{ or } B] \leq \mathbb{P}[A] + \mathbb{P}[B]$

The Factor "M"

Change this equation

$$\mathbb{P}\Big\{\left|E_{\mathrm{in}}(h)-E_{\mathrm{out}}(h)\right|>\epsilon\Big\}\leq 2e^{-2\epsilon^2N},$$

to this equation

$$\mathbb{P}\Big\{\left|E_{\mathrm{in}}(g)-E_{\mathrm{out}}(g)\right|>\epsilon\Big\}\leq 2Me^{-2\epsilon^2N}.$$

- So what? *M* is a constant.
- Bad news: M can be large, or even ∞ .
- A linear regression has $M = \infty$.
- Good news: It is possible to bound M.
- We will do it later. Let us look at the interpretation first.