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Outline

Lecture 25 Generalization

Lecture 26 Growth Function

Lecture 27 VC Dimension

Today’s Lecture:
M Hypothesis

PAC framework
Guarantee and Possibility
The M factor

Generalization Bound
H
f
Lower and upper limits

Handling M hypothesis
A preview
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Learning Goal

The ultimate goal of learning is to make

Eout(g) ≈ 0.

To achieve this we need

Eout(g) ≈x
Hoeffding Inequality

Ein(g) ≈x
Training Error

0

Hoeffding inequality holds when N is large

Training error is small when you train well
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Complex H

Recall Hoeffding inequality

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2Me−2ε2N .

If H is complex, then M will be large. So the approximation by Hoeffding inequality will
be worsen.

But if H is complex you have more options during training. So training error is improved.

So there is a trade-off:

Eout(g) ≈x
worse if H complex

Ein(g) ≈x
good if H complex

0

You cannot use a very complex model

Simple models generalize better
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Complex f

Recall Hoeffding inequality

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2Me−2ε2N .

Good news: Hoeffding is not affected by f

So even if f is complex, Hoeffding remains

Bad news: If f is complex, then very hard to train

So training error cannot be small

There is another trade-off:

Eout(g) ≈x
no effect by f

Ein(g) ≈x
worse if f complex

0

You can make H to counteract, but complex H will make Hoeffding worse.
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Rewriting the Hoeffding Inequality

Recall the Hoeffding Inequality

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2Me−2ε2N .

This is the same as
P
{
|Ein(g)− Eout(g)| ≤ ε

}
> 1− δ.

Equivalently, we can say: with probability 1− δ,

Ein(g)− ε ≤ Eout(g) ≤ Ein(g) + ε.
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What is δ?

Move around the terms, then we have

2Me−2ε2N = δ ⇒ ε =

√
1

2N
log

2M

δ

Plug this result into the previous bound:

Ein(g)− ε ≤ Eout(g) ≤ Ein(g) + ε.

This gives us

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
.

This is called the generalization bound.
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Interpreting the Generalization Bound

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
.

N: Training sample.

More is better.

δ: The probability tolerance level. “Confidence”.

Small δ: You are very conservative. So you need large N to compensate for log 1
δ

M: Model complexity.

Large M: You use a very complicated model. So you need large N to compensate for
logM
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The Two Sides of the Generalization Bound

Upper Limit

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
.

Eout(g) cannot be worse than Ein(g) + ε.

Performance guarantee. Ein(g) + ε is the worst you will have. If you can manage this
worst case then you are good.

Lower Limit

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
.

Eout(g) cannot be better than Ein(g)− ε.
Intrinsic limit of your dataset (which controls N), model complexity (which controls M),
and how much you want (which determines δ)




