ECE595 / STAT598: Machine Learning I
 Lecture 26.1: Growth Function - Overcoming the M Factor

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

Purdue
 U N I VERSITY

Outline

- Lecture 25 Generalization
- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- Overcoming the M Factor
- Decisions based on Training Samples
- Dichotomy
- Examples of $m_{\mathcal{H}}(N)$
- Finite 2D Set
- Positive ray
- Interval
- Convex set

Probably Approximately Correct

- Probably: Quantify error using probability:

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \leq \epsilon\right] \geq 1-\delta
$$

- Approximately Correct: In-sample error is an approximation of the out-sample error:

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \leq \epsilon\right] \geq 1-\delta
$$

- If you can find an algorithm \mathcal{A} such that for any ϵ and δ, there exists an N which can make the above inequality holds, then we say that the target function is PAC-learnable.

The Factor " M "

- Testing

$$
\mathbb{P}\left\{\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right\} \leq 2 e^{-2 \epsilon^{2} N}
$$

- Training

$$
\mathbb{P}\left\{\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right\} \leq 2 M e^{-2 \epsilon^{2} N}
$$

- So what? M is a constant.
- Bad news: M can be large, or even ∞.
- A linear regression has $M=\infty$.
- Good news: It is possible to bound M.
- We will do it later.

Overcoming the M Factor

- The \mathcal{B} ad events \mathcal{B}_{m} are

$$
\mathcal{B}_{m}=\left\{\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right|>\epsilon\right\}
$$

- The factor M is here because of the Union bound:

$$
\mathbb{P}\left[\mathcal{B}_{1} \text { or } \ldots \text { or } \mathcal{B}_{M}\right] \leq \mathbb{P}\left[\mathcal{B}_{1}\right]+\ldots+\mathbb{P}\left[\mathcal{B}_{M}\right]
$$

Counting the Overlapping Area

- $\Delta E_{\text {out }}=$ change in the +1 and -1 area
- Example below: Change a little bit
- $\Delta E_{\text {in }}=$ change in labels of the training samples
- Example below: Change a little bit, too
- So we should expect the probabilities

$$
\mathbb{P}\left[\left|E_{\text {in }}\left(h_{1}\right)-E_{\text {out }}\left(h_{1}\right)\right|>\epsilon\right] \approx \mathbb{P}\left[\left|E_{\text {in }}\left(h_{2}\right)-E_{\text {out }}\left(h_{2}\right)\right|>\epsilon\right] .
$$

Looking at the Training Samples Only

- Here is a our goal: Find something to replace M.
- But M is big because the whole input space is big.
- Let us look at the input space.

Looking at the Training Samples Only

- If you move the hypothesis a little, you get a different partition
- Literally there are infinitely many hypotheses
- This is M

Looking at the Training Samples Only

- Here is a our goal: Find something to replace M
- But M is big because the whole input space is big
- Can we restrict ourselves to just the training sets?

Looking at the Training Samples Only

- The idea is: Just look at the training samples
- Put a mask on your dataset
- Don't care until a training sample flips its sign

Dichotomies

- We need a new name: dichotomy.
- Dichotomy $=$ mini-hypothesis.

Hypothesis	Dichotomy
$h: \mathcal{X} \rightarrow\{+1,-1\}$	$h:\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\} \rightarrow\{+1,-1\}$
for all population samples	for training samples only
number can be infinite	number is at most 2^{N}

- Different hypothesis, same dichotomy.

Dichotomy

Definition

Let $x_{1}, \ldots, x_{N} \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are

$$
\mathcal{H}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)=\left\{\left(h\left(\boldsymbol{x}_{1}\right), \ldots, h\left(\boldsymbol{x}_{N}\right)\right) \mid h \in \mathcal{H}\right\}
$$

Dichotomy

Definition

Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are

$$
\mathcal{H}\left(x_{1}, \ldots, x_{N}\right)=\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right) \mid h \in \mathcal{H}\right\} .
$$

Candidate to Replace M

- So here is our candidate replacement for M.
- Define Growth Function

$$
m_{\mathcal{H}}(N)=\max _{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathcal{X}}\left|\mathcal{H}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|
$$

- You give me a hypothesis set \mathcal{H}
- You tell me there are N training samples
- My job: Do whatever I can, by allocating x_{1}, \ldots, x_{N}, so that the number of dichotomies is maximized
- Maximum number of dichotomy $=$ the best I can do with your \mathcal{H}
- $m_{\mathcal{H}}(N)$: How expressive your hypothesis set \mathcal{H} is
- Large $m_{\mathcal{H}}(N)=$ more expressive $\mathcal{H}=$ more complicated \mathcal{H}
- $m_{\mathcal{H}}(N)$ only depends on \mathcal{H} and N
- Doesn't depend on the learning algorithm \mathcal{A}
- Doesn't depend on the distribution $p(\boldsymbol{x})$ (because I'm giving you the max.)

