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@ Lecture 25 Generalization
@ Lecture 26 Growth Function

@ Lecture 27 VC Dimension

Today’s Lecture:
@ Overcoming the M Factor

e Decisions based on Training Samples
e Dichotomy

e Examples of my(N)
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Probably Approximately Correct

o Probably: Quantify error using probability:
P[|Ein(h) = Eout(h)| < €] > 16

o Approximately Correct: In-sample error is an approximation of the out-sample error:
P|En(h) — Eou(h)| < >1-6

@ If you can find an algorithm A such that for any € and §, there exists an N which can
make the above inequality holds, then we say that the target function is PAC-learnable.
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The Factor “M"

Testing
P{ |Ein(h) = Eou(h)] > €} < 2e727N,

Training
P{|En(g) — Eour(g)| > ¢} < 2Me™2N.

So what? M is a constant.

Bad news: M can be large, or even oc.

°
°

@ A linear regression has M = oco.

@ Good news: It is possible to bound M.
°

We will do it later.
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Overcoming the M Factor

@ The Bad events B, are
Bm = {|Ein(hm) - Eout(hm)| > 6}

@ The factor M is here because of the Union bound:

P[Bior ... or By] <P[Bi] + ...+ P[Bum].
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Counting the Overlapping Area

AE,,t = change in the +1 and -1 area
Example below: Change a little bit

AE;, = change in labels of the training samples
Example below: Change a little bit, too

So we should expect the probabilities

Pl Ein(h1) = Eout(hn)| > €] ~ P[|Ein(h2) — Eour(h2)[ > €]-
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Looking at the Training Samples Only

@ Here is a our goal: Find something to replace M.
@ But M is big because the whole input space is big.

@ Let us look at the input space.
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Looking at the Training Samples Only

@ If you move the hypothesis a little, you get a different partition
o Literally there are infinitely many hypotheses
e Thisis M

S
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Looking at the Training Samples Only

@ Here is a our goal: Find something to replace M
@ But M is big because the whole input space is big
@ Can we restrict ourselves to just the training sets?

° e
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Looking at the Training Samples Only

@ The idea is: Just look at the training samples
@ Put a mask on your dataset
@ Don't care until a training sample flips its sign

0
0 0




Dichotomies

@ We need a new name: dichotomy.
@ Dichotomy = mini-hypothesis.

Hypothesis Dichotomy
h: X — {+1,-1} h:{x1,...,xn} — {+1,-1}
for all population samples for training samples only
number can be infinite number is at most 2N

o Different hypothesis, same dichotomy.
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Dichotomy

Definition
Let xq,.

.., xy € X. The dichotomies generated by H on these points are

H(xt, ... xn) = {(h(x1),. .., h(xn)) | h € H}.
A® 2@ 7@ A®
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-1, =1, -1  [+L, =1, =1] [+1, =1, +1] [+, +1, =]
A® 2@ A@ A@
re | @ s |\ @ re @ re @
(-1, +1, 1] [-1, =1, +1]  [-1, +1, +1]  [+1, +1, +]]




Dichotomy
Definition
Let x1,...,xy € X. The dichotomies generated by / on these points are

H(Xl,... ,XN) = {(h(xl),...,h(xN)) ’ he H}

-1, =1, —1] [+1, =1, —1] [+1, +1, —1] [+1, +1, +1]

e X|| e ° °

[_1: +1, _1] [_]7 =1, +1] [_17 +1, +1] [+1: -1, +1]
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Candidate to Replace M

(]
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So here is our candidate replacement for M.
Define Growth Function
mH(N): max |H(X17"'7XN)‘
X1, XNEX

@ You give me a hypothesis set H

e o

You tell me there are N training samples

My job: Do whatever | can, by allocating x1, ..., xpy, so that the number of dichotomies
is maximized

Maximum number of dichotomy = the best | can do with your H

my(N): How expressive your hypothesis set H is

Large my(N) = more expressive H = more complicated H

my(N) only depends on # and N

Doesn't depend on the learning algorithm A

Doesn't depend on the distribution p(x) (because I'm giving you the max.)





