ECE595 / STAT598: Machine Learning I
 Lecture 26.2: Growth Function - Examples of mH(N)

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University

Purdue
 U N I VERSITY

Outline

- Lecture 25 Generalization
- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- Overcoming the M Factor
- Decisions based on Training Samples
- Dichotomy
- Examples of $m_{\mathcal{H}}(N)$
- Finite 2D Set
- Positive ray
- Interval
- Convex set

Examples of $m_{\mathcal{H}}(N)$

- $\mathcal{H}=$ linear models in 2 D
- $N=3$
- How many dichotomies can I generate by moving the three points?
- This gives you 8 . Are we the best?

Examples of $m_{\mathcal{H}}(N)$

- $\mathcal{H}=$ linear models in 2 D
- $N=3$
- How many dichotomies can I generate by moving the three points?
- This gives you 6 . The previous is the best. So $m_{\mathcal{H}}(3)=8$.

What about $m_{\mathcal{H}}(4)$? Ans: 14 .

Another Example

- $\mathcal{H}=$ set of $h: \mathbb{R} \rightarrow\{+1,-1\}$
- $h(x)=\operatorname{sign}(x-a)$
- Cut the line into two halves
- You can only move along the line
- $m_{\mathcal{H}}(N)=N+1$
- The N comes from the N points
- The +1 comes from the two ends

Another Example

- $\mathcal{H}=$ set of $h: \mathbb{R} \rightarrow\{+1,-1\}$
- Put an interval
- Length of the interval is N points
-

$$
m_{\mathcal{H}}(N)=\binom{N+1}{2}+1=\frac{N^{2}}{2}+\frac{N}{2}+1
$$

- Think of $N+1$ balls, pick 2 .

Another Example

- $\mathcal{H}=$ set of $h: \mathbb{R}^{2} \rightarrow\{+1,-1\}$
- $h(\boldsymbol{x})=+1$ is convex
- Here are some examples

Another Example

- How about this collection of data points?
- Can you find an h such that you get a convex set?
- Yes. Do convex hull.
- Does it give you the maximum number of dichotomies?
- No. All interior points do not contribute.

Another Example

- The best you can do is this.
- Put all the points on a circle.
- Then you can get at most 2^{N} different dichotomies
- So

$$
m_{\mathcal{H}}(N)=2^{N}
$$

- That is the best you can ever get with N points

Summary of the Examples

- \mathcal{H} is positive ray:

$$
m_{\mathcal{H}}(N)=N+1
$$

- \mathcal{H} is positive interval:

$$
m_{\mathcal{H}}(N)=\binom{N+1}{2}+1=\frac{N^{2}}{2}+\frac{N}{2}+1
$$

- \mathcal{H} is convex set:

$$
m_{\mathcal{H}}(N)=2^{N}
$$

- So if we can replace M by $m_{\mathcal{H}}(N)$
- And if $m_{\mathcal{H}}(N)$ is a polynomial
- Then we are good.

Reading List

- Yasar Abu-Mostafa, Learning from Data, chapter 2.1
- Mehrya Mohri, Foundations of Machine Learning, Chapter 3.2
- Stanford Note http://cs229.stanford.edu/notes/cs229-notes4.pdf

