Outline

- Lecture 25 Generalization
- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today’s Lecture:

- From Dichotomy to Shattering
 - Review of dichotomy
 - The Concept of Shattering
 - VC Dimension

- Example of VC Dimension
 - Rectangle Classifier
 - Perceptron Algorithm
 - Two Cases

Probably Approximately Correct

- **Probably**: Quantify error using probability:
 \[
 \mathbb{P}\left[|E_{in}(h) - E_{out}(h)| \leq \epsilon\right] \geq 1 - \delta
 \]

- **Approximately Correct**: In-sample error is an approximation of the out-sample error:
 \[
 \mathbb{P}\left[|E_{in}(h) - E_{out}(h)| \leq \epsilon\right] \geq 1 - \delta
 \]

- If you can find an algorithm \(\mathcal{A} \) such that for any \(\epsilon \) and \(\delta \), there exists an \(N \) which can make the above inequality holds, then we say that the target function is **PAC-learnable**.
Overcoming the M Factor

- The bad events B_m are
 \[B_m = \{ |E_{\text{in}}(h_m) - E_{\text{out}}(h_m)| > \epsilon \} \]

- The factor M is here because of the Union bound:
 \[\mathbb{P}[B_1 \text{ or } \ldots \text{ or } B_M] \leq \mathbb{P}[B_1] + \ldots + \mathbb{P}[B_M]. \]
Dichotomy

Definition

Let $x_1, \ldots, x_N \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are

$$\mathcal{H}(x_1, \ldots, x_N) = \{(h(x_1), \ldots, h(x_N)) \mid h \in \mathcal{H}\}.$$
Dichotomy

Definition

Let $x_1, \ldots, x_N \in \mathcal{X}$. The **dichotomies** generated by \mathcal{H} on these points are

$$\mathcal{H}(x_1, \ldots, x_N) = \{(h(x_1), \ldots, h(x_N)) \mid h \in \mathcal{H}\}.$$
Candidate to Replace M

- So here is our candidate replacement for M.
- Define **Growth Function**

 $$ m_{\mathcal{H}}(N) = \max_{x_1, \ldots, x_N \in \mathcal{X}} |\mathcal{H}(x_1, \ldots, x_N)| $$

- You give me a hypothesis set \mathcal{H}
- You tell me there are N training samples
- My job: Do whatever I can, by allocating x_1, \ldots, x_N, so that the number of dichotomies is maximized
- Maximum number of dichotomy = the best I can do with your \mathcal{H}
- $m_{\mathcal{H}}(N)$: How expressive your hypothesis set \mathcal{H} is
- Large $m_{\mathcal{H}}(N) = $ more expressive $\mathcal{H} = $ more complicated \mathcal{H}
- $m_{\mathcal{H}}(N)$ only depends on \mathcal{H} and N
- Doesn’t depend on the learning algorithm \mathcal{A}
- Doesn’t depend on the distribution $p(x)$ (because I’m giving you the max.)
Summary of the Examples

- \mathcal{H} is positive ray:
 \[m_\mathcal{H}(N) = N + 1 \]

- \mathcal{H} is positive interval:
 \[m_\mathcal{H}(N) = \left(\frac{N + 1}{2} \right) + 1 = \frac{N^2}{2} + \frac{N}{2} + 1 \]

- \mathcal{H} is convex set:
 \[m_\mathcal{H}(N) = 2^N \]

So if we can replace M by $m_\mathcal{H}(N)$
And if $m_\mathcal{H}(N)$ is a polynomial
Then we are good.
Definition

If a hypothesis set \mathcal{H} is able to generate all 2^N dichotomies, then we say that \mathcal{H} shatter x_1, \ldots, x_N.

- $\mathcal{H} = \text{hyperplane returned by a perceptron algorithm in 2D}.$
- If $N = 3$, then \mathcal{H} can shatter
 - Because we can achieve $2^3 = 8$ dichotomies
- If $N = 4$, then \mathcal{H} cannot shatter
 - Because we can only achieve 14 dichotomies
VC Dimension

Definition (VC Dimension)
The Vapnik-Chervonenkis dimension of a hypothesis set \(\mathcal{H} \), denoted by \(d_{VC} \), is the largest value of \(N \) for which \(\mathcal{H} \) can shatter all \(N \) training samples.

- You give me a hypothesis set \(\mathcal{H} \), e.g., linear model
- You tell me the number of training samples \(N \)
- Start with a small \(N \)
- I will be able to shatter for a while, until I hit a bump
- E.g., linear in 2D: \(N = 3 \) is okay, but \(N = 4 \) is not okay
- So I find the **largest** \(N \) such that \(\mathcal{H} \) can shatter \(N \) training samples
- E.g., linear in 2D: \(d_{VC} = 3 \)
- If \(\mathcal{H} \) is complex, then expect large \(d_{VC} \)
- Does not depend on \(p(x), \mathcal{A} \) and \(f \)