Today’s Lecture:
- From Dichotomy to Shattering
 - Review of dichotomy
 - The Concept of Shattering
 - VC Dimension
- Example of VC Dimension
 - Rectangle Classifier
 - Perceptron Algorithm
 - Two Cases
Example: Rectangle

What is the VC Dimension of a 2D classifier with a rectangle shape?

- You can try putting 4 data points in whatever way.
- There will be 16 possible configurations.
- You can show that the rectangle classifier can shatter all these 16 points.
- If you do 5 data points, then not possible. (Put one negative in the interior, and four positive at the boundary.)
- So VC dimension is 4.
Theorem (VC Dimension of a Perceptron)

Consider the input space \(\mathcal{X} = \mathbb{R}^d \cup \{1\} \), i.e., \((x = [1, x_1, \ldots, x_d]^T)\). The VC dimension of a perceptron is

\[
d_{VC} = d + 1.
\]

- The “+1” comes from the bias term \(w_0 \) if you recall
- So a linear classifier is “no more complicated” than \(d + 1 \)
- The best it can shatter is \(d + 1 \) in a \(d \)-dimensional space
- E.g., If \(d = 2 \), then \(d_{VC} = 3 \)
Why?

- We claim \(d_{VC} \geq d + 1 \) and \(d_{VC} \leq d + 1 \)
- \(d_{VC} \geq d + 1 \):
 \(\mathcal{H} \) can shatter \textbf{at least} \(d + 1 \) points
- It may shatter more, or it may not shatter more. We don’t know by just looking at this statement
- \(d_{VC} \leq d + 1 \):
 \(\mathcal{H} \) cannot shatter \textbf{more than} \(d + 1 \) points
- So with \(d_{VC} \geq d + 1 \), we show that \(d_{VC} = d + 1 \)
$d_{VC} \geq d + 1$

- **Goal:** Show that there is at least one configuration of $d + 1$ points that can be shattered by \mathcal{H}
- Think about the 2D case: Put the three points anywhere not on the same line
- Choose
 \[
 x_n = [1, 0, \ldots, 1, \ldots, 0]^T.
 \]
- Linear classifier: $\text{sign}(w^T x_n) = y_n$.
- For all $d + 1$ data points, we have
 \[
 \text{sign} \begin{pmatrix}
 1 & 0 & 0 & \ldots & 0 \\
 1 & 1 & 0 & \ldots & 0 \\
 1 & 0 & 1 & \ldots & 0 \\
 \vdots & \ddots & \ddots & \ddots & \ddots \\
 1 & 0 & \ldots & 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 w_0 \\
 w_1 \\
 \vdots \\
 w_d
 \end{pmatrix} =
 \begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_{d+1}
 \end{pmatrix} =
 \begin{pmatrix}
 \pm 1 \\
 \pm 1 \\
 \vdots \\
 \pm 1
 \end{pmatrix}
 \]
$d_{VC} \geq d + 1$

- We can remove the sign because we are trying to find one configuration of points that can be shattered.

\[
\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & 0 & \vdots \\
1 & 0 & \cdots & 0 & 1
\end{bmatrix}
\begin{bmatrix}
w_0 \\
w_1 \\
\vdots \\
w_d
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_{d+1}
\end{bmatrix}
=
\begin{bmatrix}
\pm 1 \\
\pm 1 \\
\vdots \\
\pm 1
\end{bmatrix}
\]

- We are only interested in whether the problem solvable
- So we just need to see if we can ever find a w that shatters
- If there exists at least one w that makes all ± 1 correct, then \mathcal{H} can shatter (if you use that particular w)
- So is this $(d + 1) \times (d + 1)$ system invertible?
- Yes. It is. So \mathcal{H} can shatter at least $d + 1$ points
$d_{VC} \leq d + 1$

- Can we shatter more than $d + 1$ points?
- No.
- You only have $d + 1$ variables
- If you have $d + 2$ equations, then one equation will be either redundant or contradictory
- If redundant, you can ignore it because it is not the worst case
- If contradictory, then you cannot solve the system of linear equation
- So we cannot shatter more than $d + 1$ points
- You can always construct a nasty x_1, \ldots, x_{d+1} to cause contradiction
You give me $x_1, \ldots, x_{d+1}, x_{d+2}$

I can always write x_{d+2} as

$$x_{d+2} = \sum_{i=1}^{d+1} a_i x_i$$

Not all a_i’s are zero. Otherwise it will be trivial.

My job: Construct a dichotomy which cannot be shattered by any h.

Here is a dichotomy.

x_1, \ldots, x_{d+1} get $y_i = \text{sign}(a_i)$.

x_{d+2} gets $y_{d+2} = -1$.

\(d_{VC} \leq d + 1 \)

- Then
 \[
 \mathbf{w}^T \mathbf{x}_{d+2} = \sum_{i=1}^{d+1} a_i \mathbf{w}^T \mathbf{x}_i.
 \]

- Perceptron: \(y_i = \text{sign}(\mathbf{w}^T \mathbf{x}_i) \).
- By our design, \(y_i = \text{sign}(a_i) \).
- So \(a_i \mathbf{w}^T \mathbf{x}_i > 0 \)
- This forces
 \[
 \sum_{i=1}^{d+1} a_i \mathbf{w}^T \mathbf{x}_i > 0.
 \]
- So \(y_{d+2} = \text{sign}(\mathbf{w}^T \mathbf{x}_{d+2}) = +1 \), contradiction.
- So we found a dichotomy which cannot be shattered by any \(h \).
Summary of the Examples

- \mathcal{H} is positive ray: $m_{\mathcal{H}}(N) = N + 1$.
 - If $N = 1$, then $m_{\mathcal{H}}(1) = 2$
 - If $N = 2$, then $m_{\mathcal{H}}(2) = 3$
 - So $d_{\text{VC}} = 1$

- \mathcal{H} is positive interval: $m_{\mathcal{H}}(N) = \frac{N^2}{2} + \frac{N}{2} + 1$.
 - If $N = 2$, then $m_{\mathcal{H}}(2) = 4$
 - If $N = 4$, then $m_{\mathcal{H}}(4) = 5$
 - So $d_{\text{VC}} = 2$

- \mathcal{H} is perceptron in d-dimensional space
 - Just showed
 - $d_{\text{VC}} = d + 1$

- \mathcal{H} is convex set: $m_{\mathcal{H}}(N) = 2^N$
 - No matter which N we choose, we always have $m_{\mathcal{H}}(N) = 2^N$
 - So $d_{\text{VC}} = \infty$
 - The model is as complex as it can be
Yasar Abu-Mostafa, Learning from Data, chapter 2.1
Mehrya Mohri, Foundations of Machine Learning, Chapter 3.2
Appendix
The perceptron example we showed in this lecture can be proved using Radon’s theorem.

Theorem (Radon’s Theorem)

Any set \mathcal{X} of $d + 2$ data points in \mathbb{R}^d can be partitioned into two subsets \mathcal{X}_1 and \mathcal{X}_2 such that the convex hulls of \mathcal{X}_1 and \mathcal{X}_2 intersect.

Proof: See Mehryar Mohri, Foundations of Machine Learning, Theorem 3.13.

- If two sets are separated by a hyperplane, then their convex hulls are separated.
- So if you have $d + 2$ points, Radon says the convex hulls intersect.
- So you cannot shatter the $d + 2$ points.
- $d + 1$ is okay as we have proved. So the VC dimension is $d + 1$.