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Outline

Lecture 28 Sample and Model Complexity

Lecture 29 Bias and Variance

Lecture 30 Overfit

Today’s Lecture:

Generalization Bound using VC Dimension

Review of growth function and VC dimension
Generalization bound

Sample and Model Complexity

Sample complexity
Model complexity
Trade off
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VC Dimension

Definition (VC Dimension)

The Vapnik-Chervonenkis dimension of a hypothesis set H, denoted by dVC, is the largest
value of N for which H can shatter all N training samples.

You give me a hypothesis set H, e.g., linear model

You tell me the number of training samples N

Start with a small N

I will be able to shatter for a while, until I hit a bump

E.g., linear in 2D: N = 3 is okay, but N = 4 is not okay

So I find the largest N such that H can shatter N training samples

E.g., linear in 2D: dVC = 3

If H is complex, then expect large dVC

Does not depend on p(x), A and f
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Linking the Growth Function

Theorem (Sauer’s Lemma)

Let dVC be the VC dimension of a hypothesis set H, then

mH(N) ≤
dVC∑
i=0

(
N

i

)
. (1)

I skip the proof here. See AML Chapter 2.2 for proof.
What is more interesting is this:

dVC∑
i=0

(
N

i

)
≤ NdVC + 1.

This can be proved by simple induction. Exercise.
So together we have

mH(N) ≤ NdVC + 1.
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Difference between VC and Hoeffding



c©Stanley Chan 2020. All Rights Reserved.

Generalization Bound Again

Recall the generalization bound

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
.

Substitute M by mH(N), and then mH(N) ≤ NdVC + 1:

Eout(g) ≤ Ein(g) +

√
1

2N
log

2(NdVC + 1)

δ
.

Wonderful!

Everything is characterized by δ, N and dVC

dVC tells us the expressiveness of the model

You can also think of dVC as the effective number of parameters
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Generalization Bound Again

If dVC <∞,

Then as N →∞,

ε =

√
1

2N
log

2(NdVC + 1)

δ
→ 0.

If this is the case, then the final hypothesis g ∈ H will generalize.

dVC =∞,

Then His as diverse as it can be

It is not possible to generalize

Message 1: If you choose a complex model, then you need to pay the price of training
sample

Message 2: If you choose an extremely complex model, then it may not be able to
generalize regardless the number of samples
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Generalizing the Generalization Bound

Theorem (Generalization Bound)

For any tolerance δ > 0

Eout(g) ≤ Ein(g) +

√
8

N
log

4mH(2N)

δ
,

with probability at least 1− δ.

Some small subtle technical requirements. See AML chapter 2.2

How tight is this generalization bound? Not too tight.

The Hoeffding inequality has a slack. The inequality is too general for all values of Eout

The growth function mH(N) gives the worst case scenario

Bounding mH(N) by a polynomial introduces slack




