ECE595 / STAT598: Machine Learning I
Lecture 28.1: Sample and Model Complexity - Generalization Bound using VC Dimension

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University
Today's Lecture:

- Generalization Bound using VC Dimension
 - Review of growth function and VC dimension
 - Generalization bound

- Sample and Model Complexity
 - Sample complexity
 - Model complexity
 - Trade off
VC Dimension

Definition (VC Dimension)

The Vapnik-Chervonenkis dimension of a hypothesis set \mathcal{H}, denoted by d_{VC}, is the largest value of N for which \mathcal{H} can shatter all N training samples.

- You give me a hypothesis set \mathcal{H}, e.g., linear model
- You tell me the number of training samples N
- Start with a small N
- I will be able to shatter for a while, until I hit a bump
- E.g., linear in 2D: $N = 3$ is okay, but $N = 4$ is not okay
- So I find the **largest** N such that \mathcal{H} can shatter N training samples
- E.g., linear in 2D: $d_{\text{VC}} = 3$
- If \mathcal{H} is complex, then expect large d_{VC}
- Does not depend on $p(x)$, \mathcal{A} and f
Linking the Growth Function

Theorem (Sauer’s Lemma)

Let \(d_{\text{VC}} \) be the VC dimension of a hypothesis set \(\mathcal{H} \), then

\[
m_{\mathcal{H}}(N) \leq \sum_{i=0}^{d_{\text{VC}}} \binom{N}{i}.
\]

(1)

I skip the proof here. See AML Chapter 2.2 for proof.

What is more interesting is this:

\[
\sum_{i=0}^{d_{\text{VC}}} \binom{N}{i} \leq N^{d_{\text{VC}}} + 1.
\]

This can be proved by simple induction. Exercise.

So together we have

\[
m_{\mathcal{H}}(N) \leq N^{d_{\text{VC}}} + 1.
\]
Difference between VC and Hoeffding

(a) Hoeffding Inequality
(b) Union Bound
(c) VC Bound

space of data sets
Generalization Bound Again

- Recall the generalization bound

\[E_{\text{in}}(g) - \sqrt{\frac{1}{2N} \log \frac{2M}{\delta}} \leq E_{\text{out}}(g) \leq E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \log \frac{2M}{\delta}}. \]

- Substitute \(M \) by \(m_{\mathcal{H}}(N) \), and then \(m_{\mathcal{H}}(N) \leq N^{d_{\text{VC}}} + 1 \):

\[E_{\text{out}}(g) \leq E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \log \frac{2(N^{d_{\text{VC}}} + 1)}{\delta}}. \]

- Wonderful!
- Everything is characterized by \(\delta, N \) and \(d_{\text{VC}} \)
- \(d_{\text{VC}} \) tells us the expressiveness of the model
- You can also think of \(d_{\text{VC}} \) as the effective number of parameters
Generalization Bound Again

- If $d_{VC} < \infty$,
- Then as $N \to \infty$,
 \[\epsilon = \sqrt{\frac{1}{2N} \log \frac{2(N^{d_{VC}} + 1)}{\delta}} \to 0. \]
- If this is the case, then the final hypothesis $g \in \mathcal{H}$ will generalize.
- $d_{VC} = \infty$,
- Then \mathcal{H} is as diverse as it can be
- It is not possible to generalize
- Message 1: If you choose a complex model, then you need to pay the price of training sample
- Message 2: If you choose an extremely complex model, then it may not be able to generalize regardless the number of samples
Generalizing the Generalization Bound

Theorem (Generalization Bound)

For any tolerance \(\delta > 0 \)

\[
E_{\text{out}}(g) \leq E_{\text{in}}(g) + \sqrt{\frac{8}{N} \log \frac{4m_{\mathcal{H}}(2N)}{\delta}},
\]

with probability at least \(1 - \delta \).

- Some small subtle technical requirements. See AML chapter 2.2
- How tight is this generalization bound? Not too tight.
- The Hoeffding inequality has a slack. The inequality is too general for all values of \(E_{\text{out}} \).
- The growth function \(m_{\mathcal{H}}(N) \) gives the \textbf{worst case} scenario
- Bounding \(m_{\mathcal{H}}(N) \) by a polynomial introduces slack