
c©Stanley Chan 2020. All Rights Reserved.

ECE595 / STAT598: Machine Learning I                                    
Lecture 29.1: Bias and Variance - From VC Analysis to Bias-Variance
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Outline

Lecture 28 Sample and Model Complexity

Lecture 29 Bias and Variance

Lecture 30 Overfit

Today’s Lecture:

From VC Analysis to Bias-Variance

Generalization Bound
Bias-Variance Decomposition
Interpreting Bias-Variance

Example

0-th order vs 1-st order model
Trade off
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Generalizing the Generalization Bound

Theorem (Generalization Bound)

For any tolerance δ > 0

Eout(g) ≤ Ein(g) +

√
8

N
log

4mH(2N)

δ
,

with probability at least 1− δ.

g : final hypothesis

mH(N): how complex is your model

dVC: parameter defining mH(N) ≤ NdVC + 1

Large dVC = more complex

So more difficult to train, and hence require more training samples
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Trade-off Curve
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VC Analysis

VC analysis is a decomposition.

Decompose Eout into Ein and ε.

Eout ≤ Ein +

√
8

N
log

4 ((2N)dVC + 1)

δ︸ ︷︷ ︸
=ε

Ein = training error, ε = penalty of complex model.

Bias and variance is another decomposition.
Decompose Eout into

How well can H approximate f ?
How well can we zoom in a good h in H?

Roughly speaking we will have

Eout = bias + variance
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From VC Analysis to Bias-Variance

In VC analysis we define the out-sample error as

Eout(g) = P[g(x) 6= f (x)]

Let B = {g(x) 6= f (x)} be the bad event. B ∈ {0, 1}.
Then this is equal to

Eout(g) = P[B = 1]

= 1 · P[B = 1] + 0 · P[B = 0]

= E[B].

So Eout(g) can be written as

Eout(g) = Ex [1{g(x) 6= f (x)}].

Expectation taken over all x ∼ p(x).



c©Stanley Chan 2020. All Rights Reserved.

Changing the Error Measure

In VC analysis we define the out-sample error as

Eout(g) = Ex

[
1{g(x) 6= f (x)}

]
Expectation of a 0-1 loss.

In Bias-variance analysis we define the out-sample error as

Eout(g) = Ex

[
(g(x)− f (x))2

]
.

Expectation of a square loss.

Square loss is differentiable.
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Dependency on Training Set

In VC analysis we define the out-sample error as

Eout(g
(D)) = Ex

[
1{g (D)(x) 6= f (x)}

]
The final hypothesis depends on D.

If you use a different D, your g will be different.

In Bias-variance analysis we define the out-sample error as

Eout(g
(D)) = Ex

[
(g (D)(x)− f (x))2

]
.

Why did we skip D in VC analysis?

Hoeffding bound is uniform for all D
So it does not matter which D you used to generate g
Not true for bias-variance
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Averaging over all D

To account for all the possible D’s, compute the expectation and define the expected
out-sample error.

ED
[
Eout(g

(D))
]

= ED
[
Ex

[
(g (D)(x)− f (x))2

]]
.

Eout(g
(D)): Out-sample error for the particular g found from D

ED
[
Eout(g

(D))
]
: Out-sample error averaged over all possible D’s

VC trade-off is a “worst case” analysis

Uniform bound on every D
Bias-variance trade-off is an “average” analysis

Average over different D’s
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Decomposing Eout(g
(D))

To account for all the possible D’s, compute the expectation and define the expected
out-sample error.

ED
[
Eout(g

(D))
]

= ED
[
Ex

[
(g (D)(x)− f (x))2

]]
.

Let us do some calculation

ED
[
Ex

[
(g (D)(x)− f (x))2

]]
= Ex

[
ED
[
(g (D)(x)− f (x))2

]]
= Ex

[
ED
[
g (D)(x)2 − 2g (D)(x)f (x) + f (x)2

]]
= Ex

ED[g (D)(x)2
]
− 2ED[g (D)(x)]︸ ︷︷ ︸

g(x)

f (x) + f (x)2

 .
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The Average g(x)

The decomposition gives

ED
[
Ex

[
(g (D)(x)− f (x))2

]]
= Ex

ED[g (D)(x)2
]
− 2ED[g (D)(x)]︸ ︷︷ ︸

g(x)

f (x) + f (x)2


We define the term

g(x) = ED[g (D)(x)]

The asymptotic limit of the estimate

g(x) ≈ 1

K

K∑
k=1

g (Dk )(x)

g (Dk ) are inside the hypothesis set. But g is not necessarily inside.
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Bias and Variance

Do some additional calculation

ED
[
Eout(g

(D))
]

= Ex

[
ED
[
g (D)(x)2

]
− 2ED[g (D)(x)]f (x) + f (x)2

]
= Ex

[
ED
[
g (D)(x)2

]
− 2g(x)f (x) + f (x)2

]
= Ex

[
ED
[
g (D)(x)2

]
− g(x)2 + g(x)2 − 2g(x)f (x) + f (x)2

]
= Ex

[
ED
[
g (D)(x)2

]
− g(x)2︸ ︷︷ ︸

ED[(g (D)(x)−g(x))2]

+ g(x)2 − 2g(x)f (x) + f (x)2︸ ︷︷ ︸
(g(x)−f (x))2

]
.

Define two terms

bias(x)
def
= (g(x)− f (x))2,

var(x)
def
= ED[(g (D)(x)− g(x))2].
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Bias and Variance

The decomposition:

ED
[
Eout(g

(D))
]

= Ex

[
ED
[
g (D)(x)2

]
− g(x)2︸ ︷︷ ︸

ED[(g (D)(x)−g(x))2]

+ g(x)2 − 2g(x)f (x) + f (x)2︸ ︷︷ ︸
(g(x)−f (x))2

]
.

Define two terms

bias(x)
def
= (g(x)− f (x))2,

var(x)
def
= ED[(g (D)(x)− g(x))2].

Take expectation

bias = Ex [bias(x)] = Ex
[
(g(x)− f (x))2

]
,

var = Ex [var(x)] = Ex

[
ED[(g (D)(x)− g(x))2]

]
.
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Bias and Variance Decomposition

The decomposition:

ED
[
Eout(g

(D))
]

= Ex

[
ED
[
g (D)(x)2

]
− g(x)2︸ ︷︷ ︸

ED[(g (D)(x)−g(x))2]

+ g(x)2 − 2g(x)f (x) + f (x)2︸ ︷︷ ︸
(g(x)−f (x))2

]
.

This gives

ED
[
Eout(g

(D))
]

= Ex [bias(x) + var(x)]

= bias + var
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Interpreting the Bias-Variance

The decomposition:

ED
[
Eout(g

(D))
]

= Ex

[
ED
[
g (D)(x)2

]
− g(x)2︸ ︷︷ ︸

ED[(g (D)(x)−g(x))2]

+ g(x)2 − 2g(x)f (x) + f (x)2︸ ︷︷ ︸
(g(x)−f (x))2

]
.

The two terms:

bias(x)
def
= (g(x)− f (x))2,

var(x)
def
= ED[(g (D)(x)− g(x))2].

bias(x): How close is the average function g to the target

var(x): How much uncertainty you have around g
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Model Complexity

The bias and variance are

bias(x)
def
= (g(x)− f (x))2,

var(x)
def
= ED[(g (D)(x)− g(x))2].

If you have a simple H, then large bias but small variance

If you have a complex H, then small bias but large variance




