ECE595 / STAT598: Machine Learning I Lecture 29.1: Bias and Variance - From VC Analysis to Bias-Variance

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University

PURDUE
 UNIVERSITY

Outline

- Lecture 28 Sample and Model Complexity
- Lecture 29 Bias and Variance
- Lecture 30 Overfit

Today's Lecture:

- From VC Analysis to Bias-Variance
- Generalization Bound
- Bias-Variance Decomposition
- Interpreting Bias-Variance
- Example
- 0-th order vs 1-st order model
- Trade off

Generalizing the Generalization Bound

Theorem (Generalization Bound)
For any tolerance $\delta>0$

$$
E_{\text {out }}(g) \leq E_{\text {in }}(g)+\sqrt{\frac{8}{N} \log \frac{4 m_{\mathcal{H}}(2 N)}{\delta}}
$$

with probability at least $1-\delta$.

- g : final hypothesis
- $m_{\mathcal{H}}(N)$: how complex is your model
- d_{VC} : parameter defining $m_{\mathcal{H}}(N) \leq N^{d_{\mathrm{VC}}}+1$
- Large $d_{\mathrm{VC}}=$ more complex
- So more difficult to train, and hence require more training samples

Trade-off Curve

VC Analysis

- VC analysis is a decomposition.
- Decompose $E_{\text {out }}$ into $E_{\text {in }}$ and ϵ.

$$
E_{\mathrm{out}} \leq E_{\mathrm{in}}+\underbrace{\sqrt{\frac{8}{N} \log \frac{4\left((2 N)^{d_{\mathrm{Vc}}}+1\right)}{\delta}}}_{=\epsilon}
$$

- $E_{\mathrm{in}}=$ training error, $\epsilon=$ penalty of complex model.
- Bias and variance is another decomposition.
- Decompose $E_{\text {out }}$ into
- How well can \mathcal{H} approximate f ?
- How well can we zoom in a good h in \mathcal{H} ?
- Roughly speaking we will have

$$
E_{\text {out }}=\text { bias }+ \text { variance }
$$

From VC Analysis to Bias-Variance

- In VC analysis we define the out-sample error as

$$
E_{\mathrm{out}}(g)=\mathbb{P}[g(\boldsymbol{x}) \neq f(\boldsymbol{x})]
$$

- Let $B=\{g(\boldsymbol{x}) \neq f(\boldsymbol{x})\}$ be the bad event. $B \in\{0,1\}$.
- Then this is equal to

$$
\begin{aligned}
E_{\text {out }}(g) & =\mathbb{P}[B=1] \\
& =1 \cdot \mathbb{P}[B=1]+0 \cdot \mathbb{P}[B=0] \\
& =\mathbb{E}[B] .
\end{aligned}
$$

- So $E_{\text {out }}(g)$ can be written as

$$
E_{\mathrm{out}}(g)=\mathbb{E}_{\boldsymbol{x}}[\mathbf{1}\{g(\boldsymbol{x}) \neq f(\boldsymbol{x})\}]
$$

- Expectation taken over all $\boldsymbol{x} \sim p(\boldsymbol{x})$.

Changing the Error Measure

- In VC analysis we define the out-sample error as

$$
E_{\mathrm{out}}(g)=\mathbb{E}_{\boldsymbol{x}}[1\{g(x) \neq f(x)\}]
$$

- Expectation of a 0-1 loss.
- In Bias-variance analysis we define the out-sample error as

$$
E_{\mathrm{out}}(g)=\mathbb{E}_{\boldsymbol{x}}\left[(g(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right]
$$

- Expectation of a square loss.
- Square loss is differentiable.

Dependency on Training Set

- In VC analysis we define the out-sample error as

$$
E_{\text {out }}\left(g^{(\mathcal{D})}\right)=\mathbb{E}_{\boldsymbol{x}}\left[\mathbf{1}\left\{g^{(\mathcal{D})}(\boldsymbol{x}) \neq f(\boldsymbol{x})\right\}\right]
$$

- The final hypothesis depends on \mathcal{D}.
- If you use a different \mathcal{D}, your g will be different.
- In Bias-variance analysis we define the out-sample error as

$$
E_{\text {out }}\left(g^{(\mathcal{D})}\right)=\mathbb{E}_{\boldsymbol{x}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]
$$

- Why did we skip \mathcal{D} in VC analysis?
- Hoeffding bound is uniform for all \mathcal{D}
- So it does not matter which \mathcal{D} you used to generate g
- Not true for bias-variance

Averaging over all \mathcal{D}

- To account for all the possible \mathcal{D} 's, compute the expectation and define the expected out-sample error.

$$
\mathbb{E}_{\mathcal{D}}\left[E_{\text {out }}\left(g^{(\mathcal{D})}\right)\right]=\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\boldsymbol{x}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right]
$$

- $E_{\text {out }}\left(g^{(\mathcal{D})}\right)$: Out-sample error for the particular g found from \mathcal{D}
- $\mathbb{E}_{\mathcal{D}}\left[E_{\text {out }}\left(g^{(\mathcal{D})}\right)\right]$: Out-sample error averaged over all possible \mathcal{D} 's
- VC trade-off is a "worst case" analysis
- Uniform bound on every \mathcal{D}
- Bias-variance trade-off is an "average" analysis
- Average over different \mathcal{D} 's

Decomposing $\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)$

- To account for all the possible \mathcal{D}^{\prime} s, compute the expectation and define the expected out-sample error.

$$
\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)\right]=\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right]
$$

- Let us do some calculation

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right] \\
& =\mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right] \\
& =\mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}-2 g^{(\mathcal{D})}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right]\right] \\
& =\mathbb{E}_{\boldsymbol{x}}[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-2 \underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})\right]}_{\bar{g}(\boldsymbol{x})} f(\boldsymbol{x})+f(\boldsymbol{x})^{2}] .
\end{aligned}
$$

The Average $\bar{g}(x)$

- The decomposition gives

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right] \\
& =\mathbb{E}_{\boldsymbol{x}}[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-2 \underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})\right]}_{\bar{g}(\boldsymbol{x})} f(\boldsymbol{x})+f(\boldsymbol{x})^{2}]
\end{aligned}
$$

- We define the term

$$
\bar{g}(x)=\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})\right]
$$

- The asymptotic limit of the estimate

$$
\bar{g}(\boldsymbol{x}) \approx \frac{1}{K} \sum_{k=1}^{K} g^{\left(\mathcal{D}_{k}\right)}(\boldsymbol{x})
$$

- $g^{\left(\mathcal{D}_{k}\right)}$ are inside the hypothesis set. But \bar{g} is not necessarily inside.

Bias and Variance

- Do some additional calculation

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)\right] \\
= & \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-2 \mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})\right] f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right] \\
= & \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right] \\
= & \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-\bar{g}(\boldsymbol{x})^{2}+\bar{g}(\boldsymbol{x})^{2}-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right] \\
= & \mathbb{E}_{x}[\underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-\bar{g}(\boldsymbol{x})^{2}}_{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(x)\right)^{2}\right]}+\underbrace{\bar{g}(\boldsymbol{x})^{2}-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}}_{(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}}] .
\end{aligned}
$$

- Define two terms

$$
\begin{aligned}
& \operatorname{bias}(\boldsymbol{x}) \stackrel{\text { def }}{=}(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2} \\
& \operatorname{var}(\boldsymbol{x}) \stackrel{\text { def }}{=} \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]
\end{aligned}
$$

Bias and Variance

- The decomposition:

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\mathrm{out}}\left(g^{(\mathcal{D})}\right)\right] \\
= & \mathbb{E}_{\boldsymbol{x}}[\underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-\bar{g}(\boldsymbol{x})^{2}}_{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]}+\underbrace{\bar{g}(\boldsymbol{x})^{2}-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}}_{(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}}]
\end{aligned}
$$

- Define two terms

$$
\begin{aligned}
& \operatorname{bias}(\boldsymbol{x}) \stackrel{\text { def }}{=}(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2} \\
& \operatorname{var}(\boldsymbol{x}) \stackrel{\text { def }}{=} \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]
\end{aligned}
$$

- Take expectation

$$
\begin{aligned}
\operatorname{bias} & =\mathbb{E}_{x}[\operatorname{bias}(\boldsymbol{x})]=\mathbb{E}_{x}\left[(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right] \\
\operatorname{var} & =\mathbb{E}_{x}[\operatorname{var}(\boldsymbol{x})]=\mathbb{E}_{x}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]\right] .
\end{aligned}
$$

Bias and Variance Decomposition

- The decomposition:

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)\right] \\
= & \mathbb{E}_{x}[\underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-\bar{g}(\boldsymbol{x})^{2}}_{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]}+\underbrace{\bar{g}(\boldsymbol{x})^{2}-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}}_{(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}}] .
\end{aligned}
$$

- This gives

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)\right] & =\mathbb{E}_{\boldsymbol{x}}[\operatorname{bias}(\boldsymbol{x})+\operatorname{var}(\boldsymbol{x})] \\
& =\operatorname{bias}+\operatorname{var}
\end{aligned}
$$

Interpreting the Bias-Variance

- The decomposition:

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)\right] \\
= & \mathbb{E}_{\boldsymbol{x}}[\underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-\bar{g}(\boldsymbol{x})^{2}}_{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]}+\underbrace{\bar{g}(\boldsymbol{x})^{2}-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}}_{(\bar{g}(x)-f(\boldsymbol{x}))^{2}}] .
\end{aligned}
$$

- The two terms:

$$
\begin{aligned}
\operatorname{bias}(\boldsymbol{x}) & \stackrel{\text { def }}{=}(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2} \\
\operatorname{var}(\boldsymbol{x}) & \stackrel{\text { def }}{=} \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]
\end{aligned}
$$

- bias (\boldsymbol{x}) : How close is the average function \bar{g} to the target
- $\operatorname{var}(\boldsymbol{x})$: How much uncertainty you have around \bar{g}

Model Complexity

- The bias and variance are

$$
\begin{aligned}
& \operatorname{bias}(\boldsymbol{x}) \stackrel{\text { def }}{=}(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2} \\
& \operatorname{var}(\boldsymbol{x}) \stackrel{\text { def }}{=} \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right] .
\end{aligned}
$$

- If you have a simple \mathcal{H}, then large bias but small variance
- If you have a complex \mathcal{H}, then small bias but large variance

