ECE595 / STAT598: Machine Learning I Lecture 29.2: Bias and Variance - Examples

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

- Lecture 28 Sample and Model Complexity
- Lecture 29 Bias and Variance
- Lecture 30 Overfit

Today's Lecture:

- From VC Analysis to Bias-Variance
 - Generalization Bound
 - Bias-Variance Decomposition
 - Interpreting Bias-Variance
- Example
 - 0-th order vs 1-st order model
 - Trade off

Example

Consider a sin(⋅) function

$$f(x) = \sin(\pi x)$$

- You are only given N = 2 training samples
- ullet These two samples are sampled uniformly in [-1,1].
- Call them (x_1, y_1) and (x_2, y_2)
- Hypothesis Set 0: $\mathcal{M}_0 = \text{Set of all lines of the form } h(x) = b;$
- Hypothesis Set 1: $\mathcal{M}_1 = \text{Set of all lines of the form } h(x) = ax + b$.
- Which one fits better?

Example

- If you give me two points, I can tell you the fitted lines
- For \mathcal{M}_0 :

$$h(x)=\frac{y_1+y_2}{2}.$$

• For \mathcal{M}_1 :

$$h(x) = \left(\frac{y_2 - y_1}{x_2 - x_1}\right) x + (y_1 x_2 - y_2 x_1).$$

Out-sample Error $E_{\rm out}$

- ullet If you use \mathcal{M}_1
- Then you get this
- $E_{\rm out} = 0.2$

Out-sample Error $E_{\rm out}$

- \bullet If you use \mathcal{M}_0
- Then you get this
- $E_{\rm out} = 0.5$

Scan through ${\mathcal D}$

- Now draw a different training set
- Then you have a different curve every time
- Plot them all on the same figure
- Here is what you will get

Scan through \mathcal{D}

- Now draw a different training set
- Then you have a different curve every time
- Plot them all on the same figure
- Here is what you will get

Limiting Case

- Draw infinitely many training sets
- You will have two quantities
- $\overline{g}(x)$: The average line
- $\sqrt{\operatorname{var}(x)}$: The variance

n 2020. All Rights Reser

How Come!

- $\overline{g}(x)$ is a good average.
- But the error bar is big!
- Analogy: I have a powerful canon but not very accurate.

Learning Curve

- Expected out-sample error: $E_{\text{out}}(g^{(\mathcal{D})})$
- Expected in-sample error: $E_{\rm in}(g^{(\bar{\mathcal{D}})})$
- How do they change with N?

VC vs Bias-Variance

- ullet VC analysis is independent of ${\cal A}$
- ullet Bias-variance depends on ${\cal A}$
- ullet With the same ${\cal H}$, VC always returns the same generalization bound
- ullet Guarantee over all possible choices of dataset ${\cal D}$
- Bias-variance: For the same \mathcal{H} , you can have different $g^{(\mathcal{D})}$
- Depend on \mathcal{D} , you have a different $E_{\mathrm{out}}(g^{(\mathcal{D})})$
- Therefore we take expectation

$$\mathbb{E}_{\mathcal{D}}\left[\mathsf{E}_{\mathrm{out}}(\mathsf{g}^{(\mathcal{D})}) \right]$$

- In practice, bias and variance cannot be computed
- You do not have f
- It is a conceptual tool to design algorithms

Reading List

- Yasar Abu-Mostafa, Learning from Data, chapter 2.2
- Chris Bishop, Pattern Recognition and Machine Intelligence, chapter 3.2
- Duda, Hart and Stork, Pattern Classification, chapter 9.3
- Stanford STAT202 https://web.stanford.edu/class/stats202/content/lec2.pdf
- CMU 10-601 https://www.cs.cmu.edu/~wcohen/10-601/bias-variance.pdf
- UCSD 271A http://www.svcl.ucsd.edu/courses/ece271A/handouts/ML2.pdf