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VC Analysis
Example
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Weight Decay
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Choosing a Regularization
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Soft Order Constraint

Consider the following example

H = set of polynomials in one variable x ∈ [−1, 1].
E.g., h(x) = 2x2 + 3x + 7.
Want to express h(x) using basis function.
Basis functions for polynomials are Legendre polynomials Lq(x), q = 1, 2, . . .
So, any h(x) can be expressed as

h(x) =
Q∑

q=1

wqLq(x) (2)
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Soft Order Constraint

This model is indeed linear! (Why?)

You define a nonlinear transform Φ,

z = Φ(x) =


1

L1(x)
...

LQ(x)


The hypothesis set is

HQ =

{
h

∣∣∣∣h(x) = wTz =
Q∑

q=0

wqLq(x)

}
So now you can define training error (for linear regression) as

Ein(w) =
1

N

N∑
n=1

(wTzn − yn)2
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Soft Order Constraint

There are multiple ways of constraining the weights.

Hard constraint:

Force coefficients to be zero.
For example,

H2 = {w | w ∈ H10;wq = 0, forq ≥ 3}.

Soft constraint:

Force coefficients to be small.
For example,

Q∑
q=0

w2
q ≤ C

It encourages weights to be small without changing the order of the polynomial by explicitly
forcing some weights to zero.
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VC Perspective of Soft Order Constraint

The optimization is

minimize
w

Ein(w) subject to wTw ≤ C (3)

We know Ein(w) = 1
N ‖Zw − y‖2

The hypothesis set is

H(C ) = {h | h(x) = wTz , wTw ≤ C}

So the optimization is equivalent to minimize Ein over H(C )

If C1 < C2, then H(C1) ⊂ H(C2) and dvc(H(C1)) ≤ dvc(H(C2))

So we should expect better generalization with H(C1)
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Solving the Soft Order Constraint Problem

The optimization problem is

minimize
w

1

N
‖Zw − y‖2 subject to wTw ≤ C (4)

Using Lagrangian techniques we can show that the minimization is equivalent to

minimize
w

Ein(w) +
λC
N

wTw

for some choices of λC .
You can further change the constraint to

Q∑
q=0

γqw
2
q ≤ C

γq = q or γq = eq encourages a low-order fit
γq = (1 + q)−1 or γq = e−q encourages a high-order fit
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Augmented Error

Another type of regularization is augmented error

Eaug(w) = Ein(w) + λwTw (5)

Unconstrained minimization is often easier than constrained minimization

But you are paying the price of interpretability

For a given C , soft order constraint corresponds to selecting a hypothesis from a smaller
set H(C )

VC analysis says we will get a better generalization when C decreases (but not too much)

The optimal C is sum square magnitude we allow.

For augmented error, you need to find the optimal parameter λ∗

This is not very interpretable.
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VC Perspective of Augmented Error

The augmented error for a hypothesis h ∈ H is

Eaug(h, λ,Ω) = Ein(h) +
λ

N
Ω(h) (6)

Here, Ω(h) = wTw
There are two components of the penalty:

The regularizer Ω(h) which penalizes a particular property of h
The regularization parameter λ which controls the amount of regularization

As N increases, the need for regularization goes down

This equation resembles VC bound
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Choice of λ




