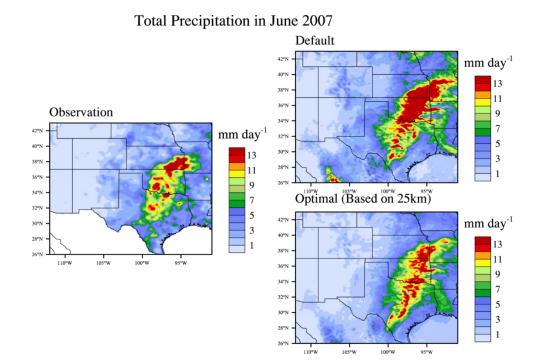
Uncertainty Quantification and Scientific Machine Learning for Complex Engineering Systems

Guang Lin,

Director, Data Science Consulting Service, Departments of Mathematics, Statistics, Mechanical Engineering, Earth, Atmospheric, and Planetary Sciences, Purdue University

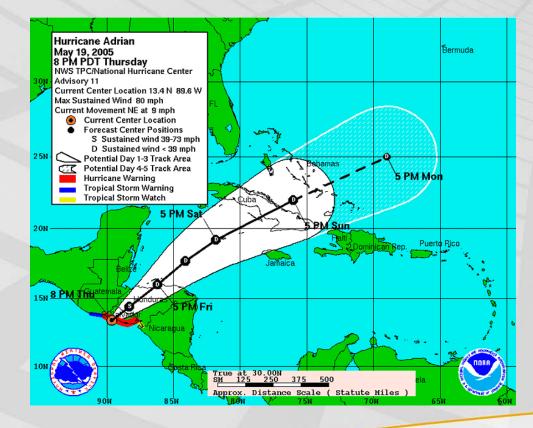


BNC Faculty Seminar Series., Feb. 13, 2020

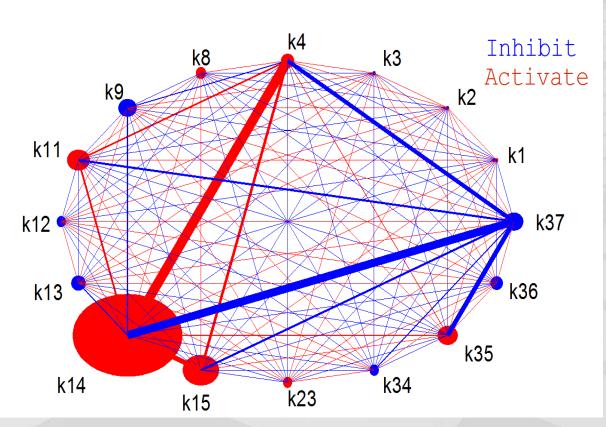
Why Uncertainty Quantification?

-Use available data to improve high-fidelity model's predictive capability to enable new scientific discovery and make critical decision

UQ for Decision Making: Hurricane Forecasting



Sensitivity Analysis of Reaction Networks Related to Tissue Factor Pathway of Blood Coagulation



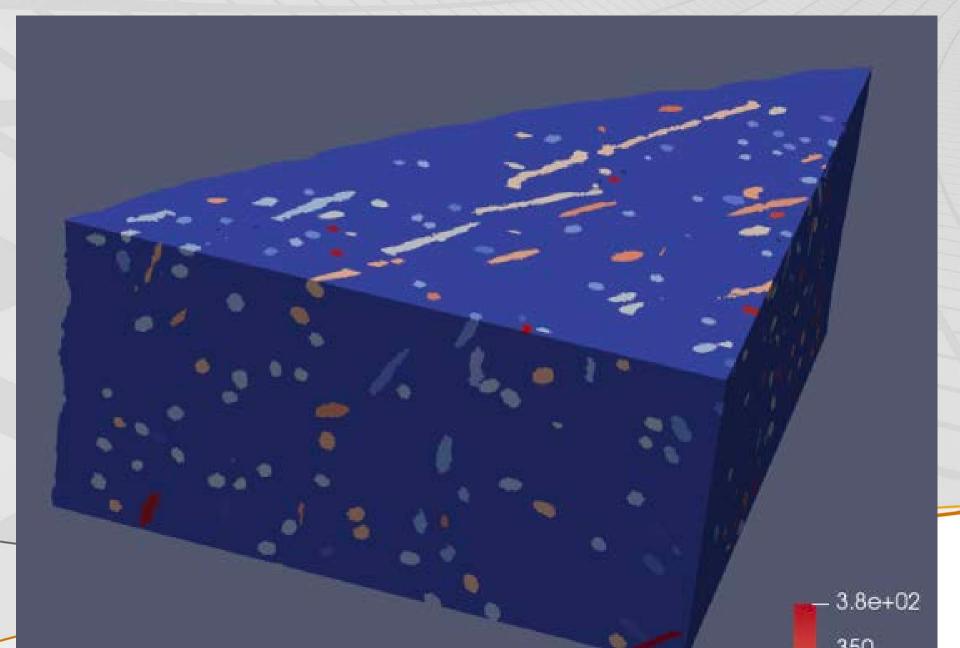


Identify the important coagulation factors (reaction rates) and their interactions in blood coagulation with respect to total thrombin

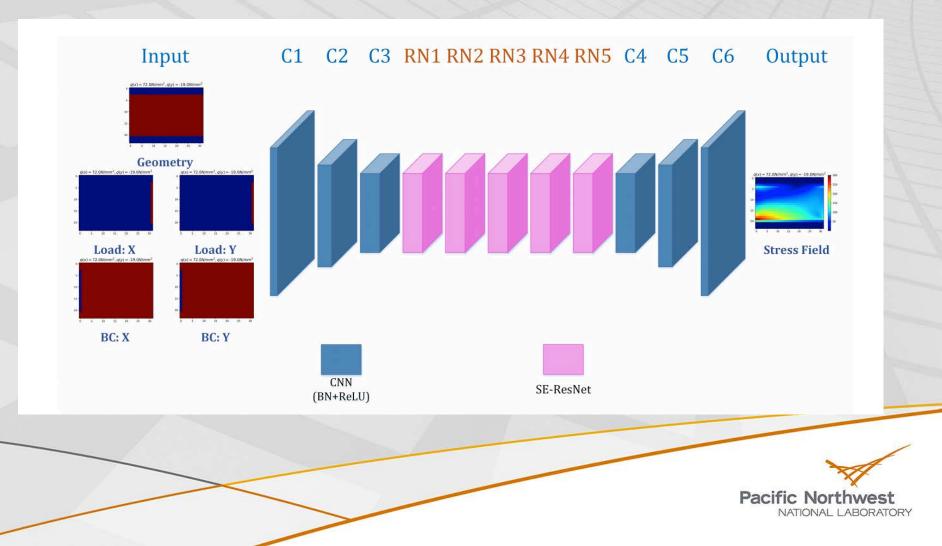
Sensitivity Analysis of Reaction Networks Related to Tissue Factor Pathway of Blood Coagulation

Identify the sensitivity shift and their interactions in blood coagulation with respect to total thrombin when blocking K14 and K15 Pacific Northwest

Deep Learning for Material Science: DNN-based Processing-Structure-Performance Map for Fibre Reinforced Polymer



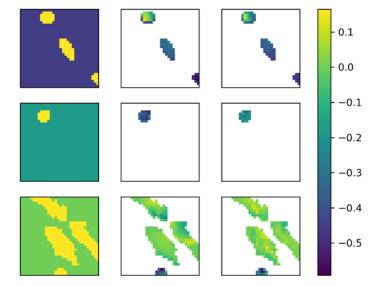
Deep Learning for Material Science: DNN-based Processing-Structure-Performance Map for Fibre Reinforced Polymer

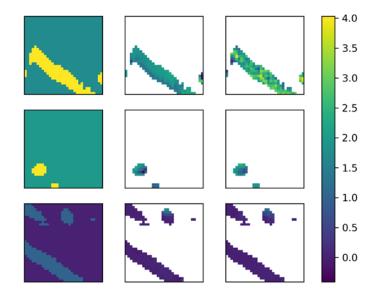


Results

Models		
	0.33	
Hydraulic Stress Field		

Deep Learning for Material Science: DNN-based Processing-Structure-Performance Map





Three columns are: microstructure, true stress field, predicted stress field

Outline:

UQ for Complex systems: its challenge and open issues

- UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
- UQ open issue 2: Curse of Dimensionalities (Sparse grid, Adpative ANOVA, compressive sensing algorithm with basis rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational Expensive Models - Bayesian parameter estimation in largescale regional and global climate models

Pacific Northwest NATIONAL LABORATORY

Uncertainty Quantification for Deen Learning

Generalized Polynomial Chaos - gPC

$$T(x,t;\omega) = \sum_{j=0}^{\infty} T_j(x,t) \Phi_j(\xi(\omega))$$

- Polynomials of random variable $\xi(\omega)$
- Orthogonality: $\langle \Phi_i \Phi_j \rangle = \langle \Phi_i^2 \rangle \delta_{ij}$

 $\langle f(\xi)g(\xi)\rangle = \int f(\xi)g(\xi)W(\xi)d\xi$ $\langle f(\boldsymbol{\xi})g(\boldsymbol{\xi})\rangle = \sum f(\xi_i)g(\xi_i)w(\xi_i)$

- Weight function determines underlying random variable (not necessarily Gaussian)
- Complete basis from Askey scheme
- Each set of basis converges in L² sense

Continuous Cases

Hermite	Gaussian
Laguerre	Gamma
Jacobi	Beta
Legendre	Uniform

Discrete Cases

Polynomials	Distribution of
Charlier	Poisson
Krawtchwouk	Binomial
Meixner	Negative binomial
Hahn	Hypergeometric
1(2) (2002)	
4 <u>(2) (2002)</u>	

NATIONAL LABORATORY

Xiu & Karniadakis SIAM J. Sci. Comput. 24

Implementation of gPC method

$$L(x, u; \xi) = f(x)$$

Galerkin Projection:

PC expansion: $u = \sum_{|\alpha|=0}^{p} u_{\alpha} \phi_{\alpha}$ Residual: $R(\xi) = L(x, \sum_{|\alpha|=0}^{p} u_{\alpha} \phi_{\alpha}) - f(x)$ Deterministic system of u_{α} : $E[R(\xi)\phi_{\beta}(\xi)] = 0, |\beta| \le p$

> Collocation Projection:

□ Interpolation operator: $\{\xi^{(i)}\}_{i=1}^{Ng}$ a set of grid points in parameter space.

Deterministic system on grid points: $L(x, u; \xi^{(i)}) = f(x)$

□ Choices of grid points: full tensor products of Gauss quadrature points – $O(N^M)$; sparse grids – $O(N\log(N)^{M-1})$

Computational Speed-Up

Lucor & Karniadakis, Generalized Polynomial Chaos and Random Oscillators Int. J. Num. Meth. Eng., vol. 60, 2004

PDF	Error (mean)	Monte- Carlo: M	GPC: (P+1)	Speed-Up
Gaussian	2%	350	56	6.25
	0.8%	2,150	120	18
	0.2%	33,200	220	151
Uniform	0.2%	13,000	10	1,300
	0.018%	1,580,000	20	79,000
	0.001%	610,000,000	35	17,430,000

Advantage of gPC

- Fast convergence due to spectral expansion.
- Efficiency due to orthogonality.

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\nabla p + \nu (1 + \delta \xi) \nabla^2 u$$
$$\nabla \cdot u = 0$$

Kovasznay Flow:

$$u = 1 - e^{\lambda x} \cos 2\pi y$$

- $v = \frac{\lambda}{2\pi} e^{\lambda x} \sin 2\pi x$ $\lambda = \frac{Re(\xi)}{2} \left(\frac{Re^2(\xi)}{4} + 4\pi\right)^{1/2}$
- ξ : random variable of Beta(1,1).



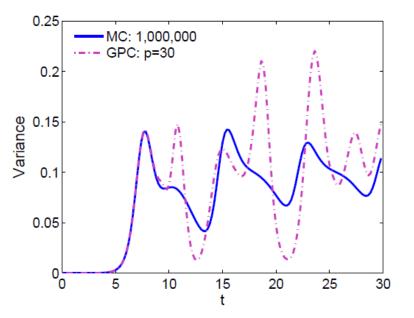
Limitations of gPC

Big Inefficient for problems with low regularity in the parametric space.

Bay diverge for long-time integrations.

Kraichnan-Orszag three-mode model:

$$\begin{cases} \frac{\mathrm{d}Y_1}{\mathrm{d}t} = Y_2 Y_3\\ \frac{\mathrm{d}Y_2}{\mathrm{d}t} = Y_1 Y_3\\ \frac{\mathrm{d}Y_3}{\mathrm{d}t} = -2Y_2 Y_3\\ \text{random initial conditions.} \end{cases}$$



Outline:

UQ for Complex systems: its challenge and open issues

- & UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
- UQ open issue 2: Curse of Dimensionalities (Sparse grid, Adpative ANOVA, compressive sensing algorithm with basis rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational Expensive Models - Bayesian parameter estimation in largescale regional and global climate models

Pacific Northwest NATIONAL LABORATORY

Uncertainty Quantification for Deen Learning

Open Issue 1: Parametric Discontinuities/Bifurcations - Multi-Element Probabilistic Collocation Method (ME-PCM)

B1

B₃

pdf

 e_1

 e_{γ}

 e_3

Β,

B₄

> Decompose $\,\Gamma$ into non-overlapping elements B^{\imath}

> Define
$$A_k = \mathbf{Y}^{-1}(B^k)$$

> Define new random variable $\eta_k : A_k \to B_k$ on the restricted space $(A_k, \mathcal{F} \cap A_k, P(\cdot|A_k))$ with conditional PDF $\hat{\rho}(x|A_k) = \frac{\rho(x)}{P(A_k)}$

> Numerically reconstruct local polynomial chaos basis on each element, orthogonal with respect to $\hat{\rho}$

> Perform PCM on each element. No C^0 requirement on boundaries (measure 0).

$$\tilde{u}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{N_e} \mathcal{I}_{B^i} u_k(\boldsymbol{x}, \boldsymbol{y}) \mathbb{I}_{\{\boldsymbol{y} \in B^i\}} \quad \forall \boldsymbol{x} \in \overline{D}, \ \forall \boldsymbol{y} \in \Gamma$$

Lin et al., CiSE, 9(2) 21- choose spatial discretization method 29, 2007

Outline:

UQ for Complex systems: its challenge and open issues

- UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
- UQ open issue 2: Curse of Dimensionalities (Sparse grid, Adaptive ANOVA, compressive sensing algorithm with basis rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational Expensive Models - Bayesian parameter estimation in largescale regional and global climate models

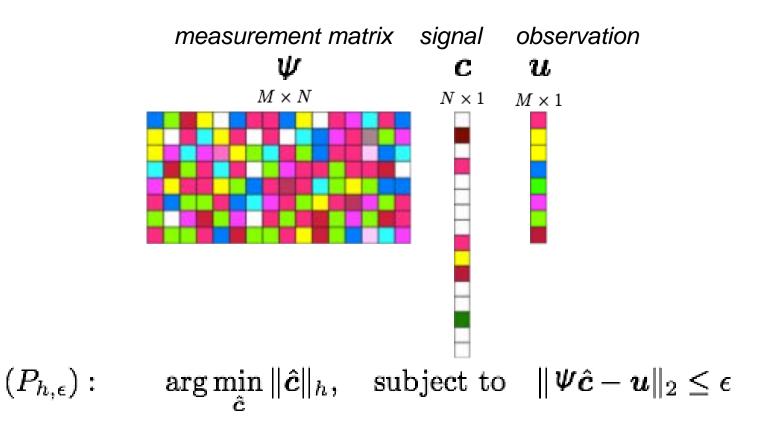
Pacific Northwest NATIONAL LABORATORY

Uncertainty Quantification for Deen Learning

Open Issue 2: Curse of Dimensionality – Multi-Element Probabilistic Collocation Method (ME-PCM) Choice of N-dimensional approximation operator: \mathcal{I}_{B^i} tensor product Tensor product Lagrangian interpolation interpolation orders $$\begin{split} \sum_{B^{i}}^{r} u_{k}(\boldsymbol{x},\boldsymbol{y}) &= \sum_{m=1}^{r} u_{k}(\boldsymbol{x},\boldsymbol{q}_{m}) \cdot l_{m}(\boldsymbol{y}) \\ \xrightarrow{\boldsymbol{\gamma}} & \text{interpolation points} \end{split}$$ □ Smolyak sparse grid approximation (Smolyak, 1963) sparse $\mathcal{V}^i_j(v) = \sum v(y^i_m) \cdot a^i_m$ 1D interp. rule in dimension i m=1 $\mathcal{S}_{B^{i}}(s) = \sum_{s-N+1 \le |\mathbf{i}| \le s} (-1)^{s-|\mathbf{i}|} \begin{pmatrix} N-1 \\ s-|\mathbf{i}| \end{pmatrix} \cdot (\mathcal{V}_{1}^{i_{1}} \otimes \cdots \otimes \mathcal{V}_{N}^{i_{N}})^{\bullet}$ Pacific Northwest NATIONAL LABORATORY interpolatory for nested 1D rules

Compressive sensing for gPC expansion

M < N



- H. Lei, X. Yang, B. Zheng, **G. Lin**, N. Baker, Constructing Surrogate Models of Complex Systems with Enhanced Sparsity: Quantifying the Influence of Conformational Uncertainty in Biomolecular Solvation, *SIAM Multiscale Modeling and Simulation*, 13(4): 1327-1353, 2016.
- X. Yang, H. Lei, N. Baker, **G. Lin***, Enhancing sparsity of Hermite polynomial expansions by iterative rotations, Journal of Computational Physics, 307: 94-09, 2016.

Outline:

UQ for Complex systems: its challenge and open issues

- UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
- UQ open issue 2: Curse of Dimensionalities (Sparse grid, Adpative ANOVA, compressive sensing algorithm with basis rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational Expensive Models - Bayesian parameter estimation in largescale regional and global climate models

Pacific Northwest NATIONAL LABORATORY

Uncertainty Quantification for Deen Learning

Uncertainty Quantification and Bayesian Parameter Estimation in Convective Cloud scheme using Large-Scale, Heterogeneous Data

- Downdraft Rate
- Entrainment Rate
- CAPE Consumption Time
- TKE for Shallow Convection
- Starting Height of Downdraft

Five Parameters

GPCP daily precipitation

(UW) Daily 1/8degree gridded meteorological data (Maurer et al., 2002)

Impact of Optimization on Other Variables
 Observational Constrain, 10-m wind speed)

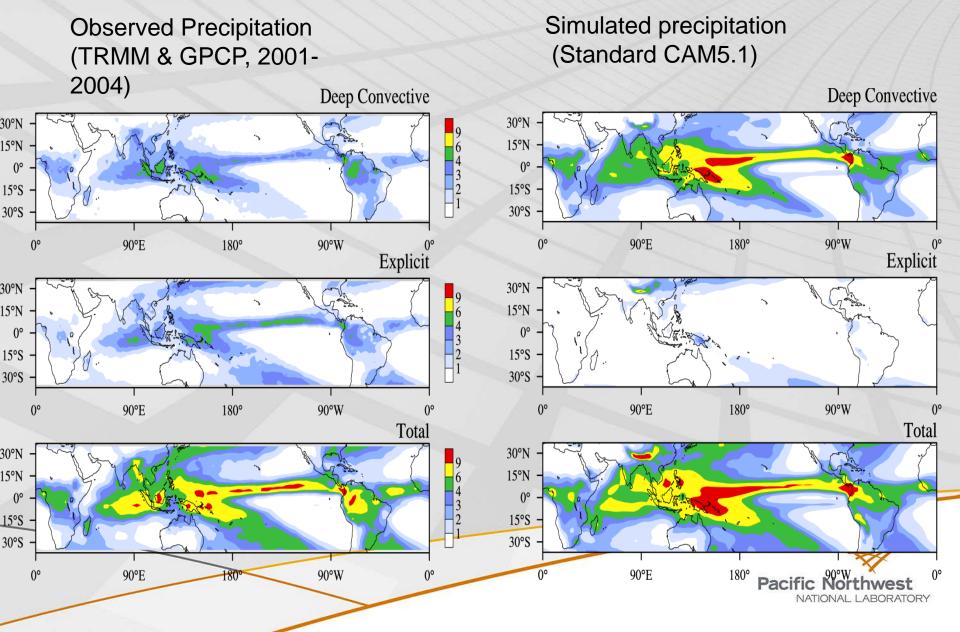
Yang, B., Qian, Y., Lin, G., Leung, R., and Zhang, Y., Atmos. Chem. Phys. 11, 31769-31817, doi:10.5194/acpd-11-31769-2011, 2040 fic Northwest National Laboratory

Bayesian Parameter Estimation of Convection Scheme on Regional Climate Model using SAA

Total Precipitation in June 2007



Optimal Parameter Estimation in Community Atmosphere Models -Motivation on Parameter Tuning in Deep Convective Precipitation



Methodology: Selected 12 parameters in ZM

scheme

Blue: Ocean Red:

Land

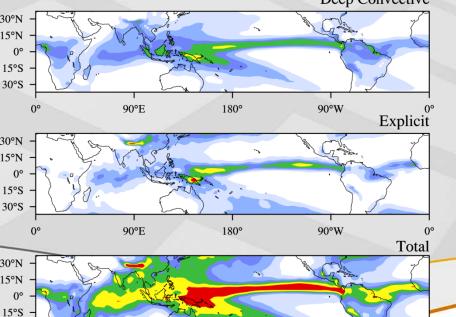
Parameter	Default	Minimum	Maximum	Description
	45E-3	1E-3	20E-3	Deep convection precipitation
cO	5.9E-3	1E-3	20E-3	efficiency
	-1.0E-3	-2.0E-3	0	Parcel fractional mass entrainment
dmpdz	-1.0E-3	-2.0E-3	0	rate
	3600	1800	14400	
Tau	3600	1800	14400	Consumption time scale
				Threshold value for CAPE for deep
Capelmt	70	20	200	convection
ke	1.0E-6	0.5E-6	10E-6	Evaporation efficiency parameter
				Initial cloud downdraft mass flux
alfa	0.1	0.05	0.6	
				Ratio of downdraft entrainment to
edratio	2	1	3	updraft
				Radius of detrained liquid from
dsliq	8	4	24	convection
				Radius of detrained ice from
dsice	25	10	50	convection

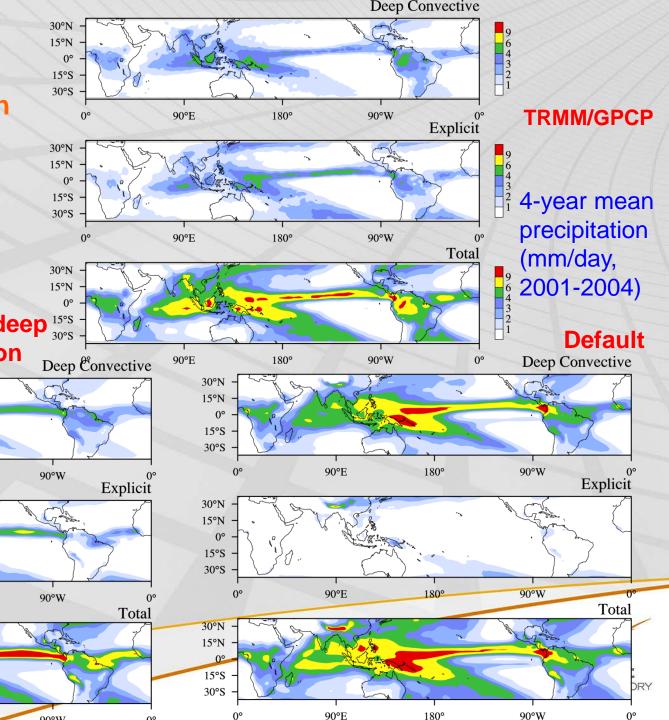
Bayesian Parameter Estimation of Deep Convection Scheme in Global Climate Model 2001-2004

J. Geophys. Res., doi:10.1029/2012JD018213

30°S

Optimal by matching deep ¹⁵ convective precipitation





Outline:

UQ for Complex systems: its challenge and open issues

- UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
- UQ open issue 2: Curse of Dimensionalities (Sparse grid, Adpative ANOVA, compressive sensing algorithm with basis rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational Expensive Models - Bayesian parameter estimation in largescale regional and global climate models

Pacific Northwest NATIONAL LABORATORY

Uncertainty Quantification for Deen Learning

ConvPDE-UQ: Quantify the uncertainties in deep learning of PDE solutions in arbitrary domain

Goal: Replace FEM solver and achieve real-time prediction of PDE solutions and quantify the uncertainty

N. Winovich, K. Ramani, **G. Lin***, ConvPDE-UQ: Fast convolutional encoder-decoder networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains, Journal of Computational Physics, in press, 2019.

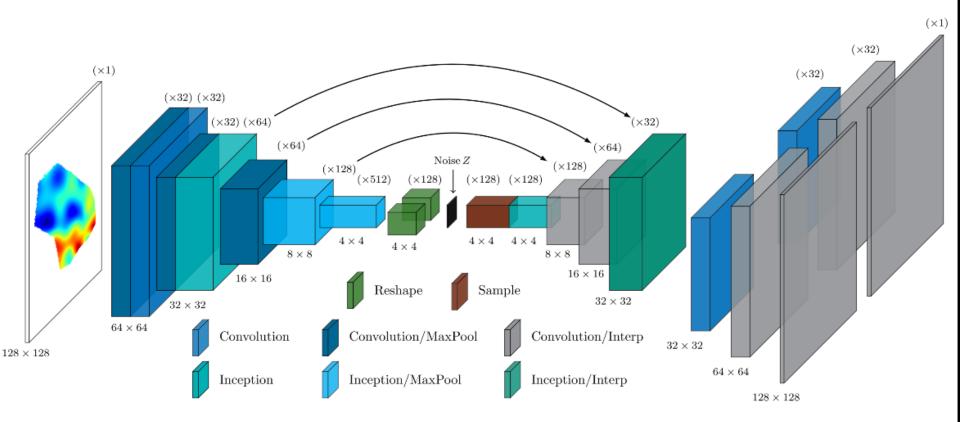
Poisson on Circle	Varied Domain	Nonlinear Poisson	
$\Delta u = f$	$\Delta u = f \qquad \text{div}\left(\left(1 + u ^2\right) \cdot \nabla u\right)$		
on fixed disk D	on varying domain Ω	on varying domain Ω	

Homogeneous Dirichlet boundary condition: u = 0 on $\partial \Omega$

$$\begin{cases} \mathcal{L}u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

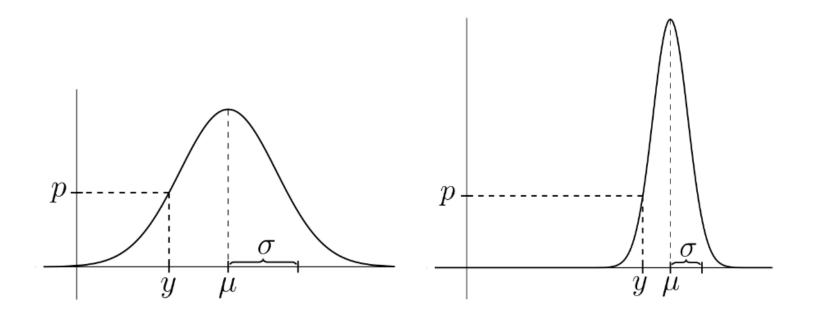
Goal: Find the solution u given a domain Ω and a source term f.

Network Architecture



The output of the network consists of two channels: one channel for the pointwise mean predictions µ[i, j] and another channel for the predicted pointwise log standard deviations log σ[i, j].

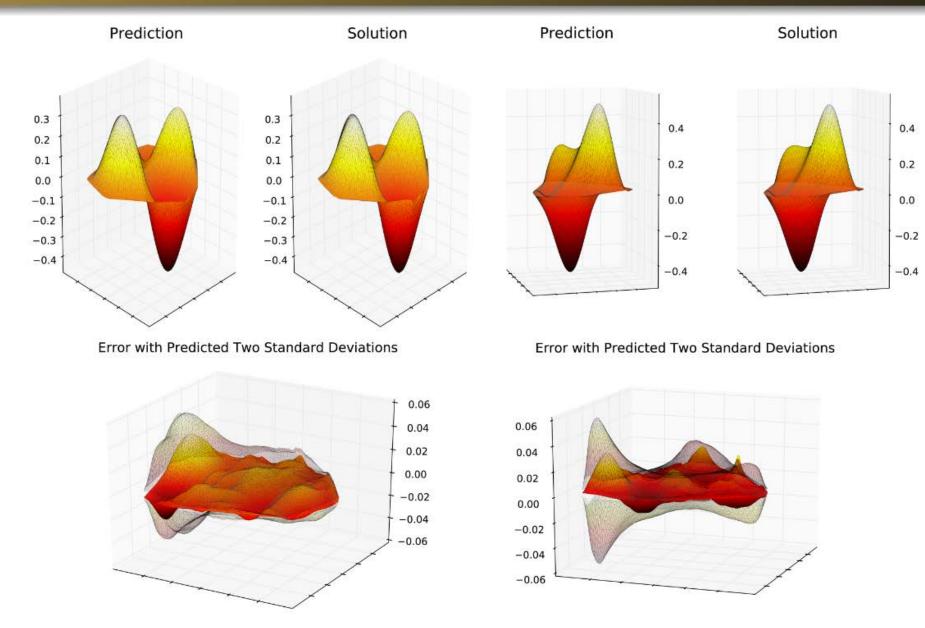
Probabilistic Predictions



- The probabilistic prediction framework allows the network to begin with coarse, low-confidence predictions (left) and to gradually build confidence by lowering the predicted standard deviations.
- High confidence predictions (right) allow the network to attain far lower losses when correct, but have steep drop-offs which severely penalize any inaccuracy in the network's predictions.

Problem	Model	L^1 Relative Error	L^2 Relative Error	
Poisson on Circle	Probability MSE ($\lambda = 0.1$) MSE ($\lambda = 0.0$)	9.19e-3 1.00e-2 1.23e-2 1.28e-2 1.23e-2 1.29e-2	2.60e - 4 $3.06e - 4$	
Varying Domain	Probability MSE ($\lambda = 0.1$) MSE ($\lambda = 0.0$)	$\begin{array}{rrrr} {\bf 1.82e-2} & {\bf 2.11e-2} \\ {\bf 3.43e-2} & {\bf 3.57e-2} \\ {\bf 3.60e-2} & {\bf 3.75e-2} \end{array}$	$\begin{array}{cccccccc} {\bf 1.21e-3} & {\bf 1.45e-3} \\ {\bf 2.25e-3} & {\bf 2.62e-3} \\ {\bf 2.43e-3} & {\bf 2.86e-3} \end{array}$	
Nonlinear Poisson	Probability MSE ($\lambda = 0.1$) MSE ($\lambda = 0.0$)	$\begin{array}{rrrr} {\bf 1.94e-2} & {\bf 2.24e-2} \\ {\bf 3.21e-2} & {\bf 3.46e-2} \\ {\bf 3.37e-2} & {\bf 3.61e-2} \end{array}$	1.32e-3 1.58e-3 1.84e-3 2.46e-3 2.09e-3 2.69e-3	

Qualitative Results



Peri-Net: Deep learning of material failure and fracture propagation

Goal: Replace computational expensive fracture mechanics solver and achieve real-time prediction of material failure and fracture propagation

M. Kim, N. Winovich, **G. Lin***, W. Jeong, Peri-Net: Analysis of crack patterns using deep neural networks, Journal of peridynamics and nonlocal modeling, in press, 2019.

Why do we need this study?

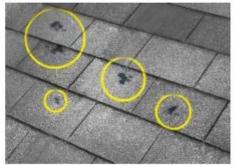
Disaster (Hail damage)

Every day life (Cell phone damage)

Structure (Bridge damage)

Bridge

Cantilever section



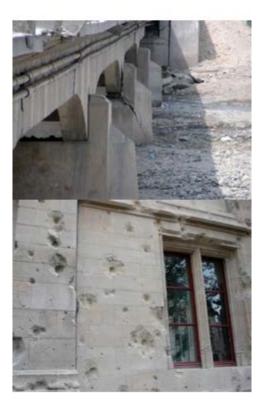
(Image: www.wikihow.com)

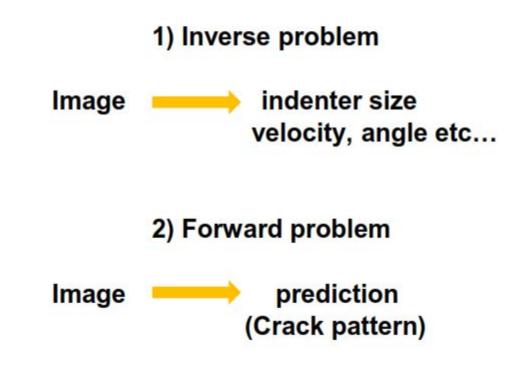
(Image: www.instructables.com)

(Image: www.californiabeat.org)

What is the objective of this study?

Take a photo (Crack/Damage)





Set up for damage in LAMMPS (Forward problem)

Structure: Disk

Radius: 0.037m

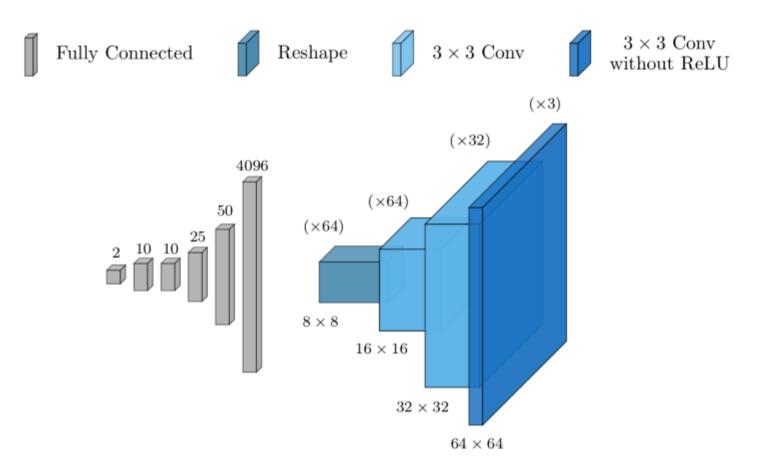
Depth: 0.0025m

1 Variables 2 fixed 1) Radius of indenter (0.0050m) fixed 2) Velocity of indenter (100m/s) fixed 3) Hitting location of disk (1000 hitting points)

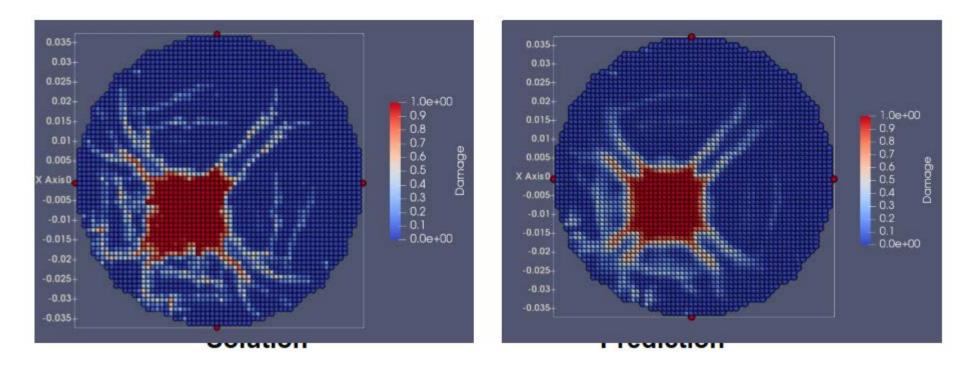
Total data: 1x1x1000=1000 data

Architecture of CNN

(Train Error (MSE) = 0.0639, Test Error (MSE) = 0.0158)



Result

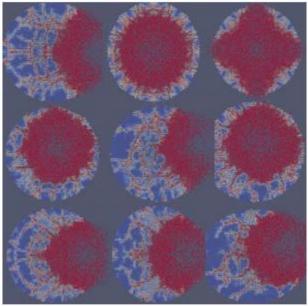


Computation time per one simulation	Peridynamics	CNN
	7.5sec	0.00313sec

Getting Data (Forward problem)

Change 3 variables

Peridynamics in LAMMPS



15625 data

Set up for damage in LAMMPS (Forward problem)

Structure: Disk

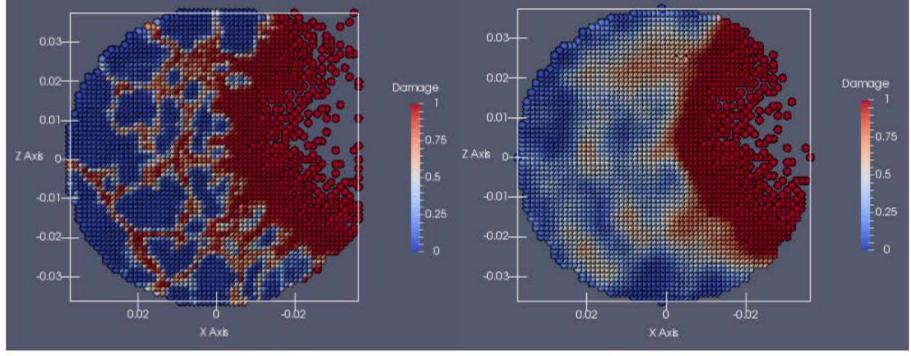
Radius: 0.037m

Depth: 0.0025m

3 Variables 1) Radius of indenter (25 data, 0.0050m - 0.00525m) 2) Velocity of indenter (25 data, 100m/s -102.5m/s) 3) Hitting location of disk (25 hitting points)

Total data: 25x25x25=15625 data

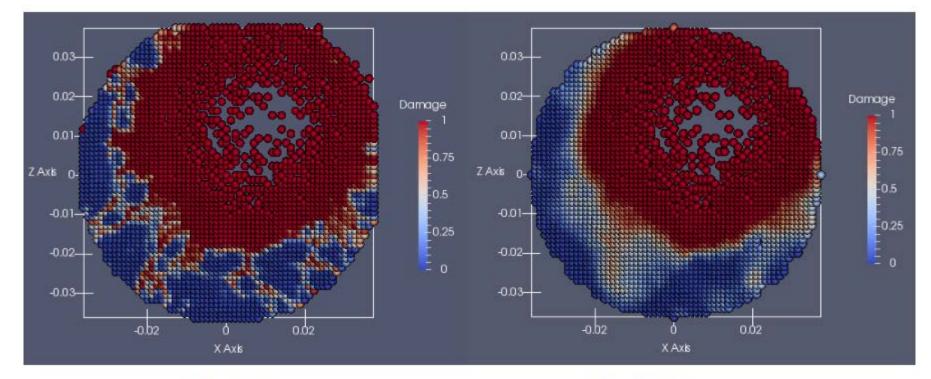
Results



Solution

Prediction

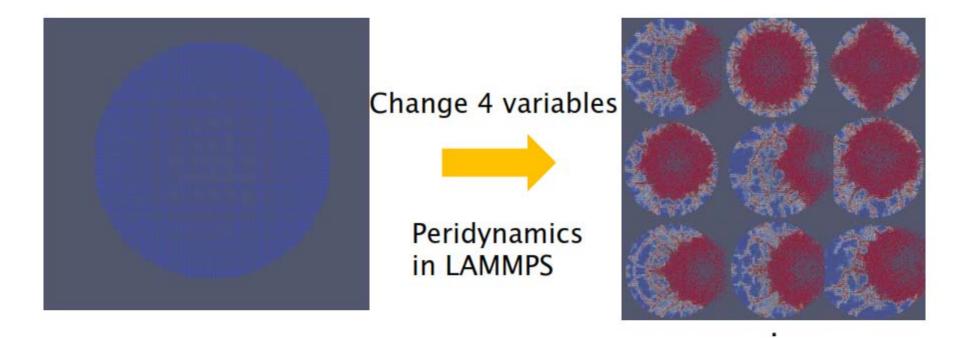
Results



Solution

Prediction

Getting Data (Inverse problem)



7200 data

Set up for damage in LAMMPS (Inverse problem)

- Structure: Disk

- Radius: 0.037m
- Depth: 0.0025m

4 Variables

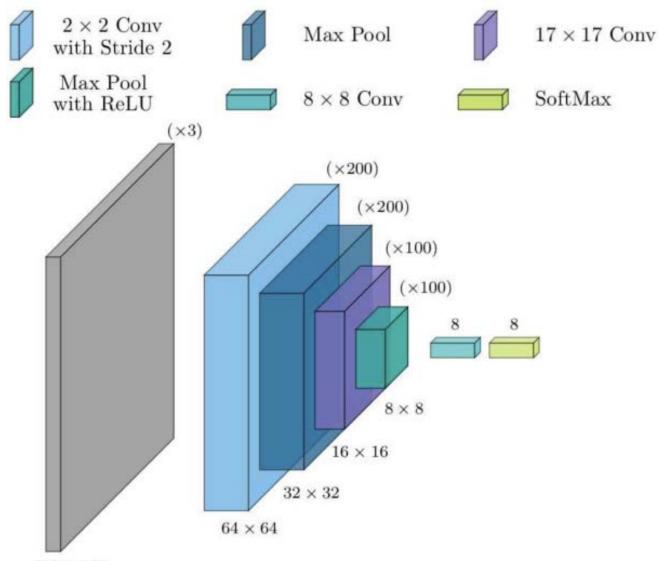
- 1) Radius of indenter (0.007m, 0.008m)
- 2) Velocity of indenter (100m/s, 100.1m/s)
- 3) Angle of indenter (0°, 45°)
- 4) Hitting location of disk (900 hitting points)

- Data (labeled all of data)

8 Mode (each mode 900data – Training data = 7200, Test data = 1200)

Mode1	r=0.007m, v=100m/s, 0°
Mode2	r=0.007m, v=100.1m/s, 0°
Mode3	r=0.008m, v=100m/s, 0°
Mode4	r=0.008m, v=100.1m/s, 0°
Mode5	r=0.007m, v=100m/s, 45°
Mode6	r=0.007m, v=100.1m/s, 45°
Mode7	r=0.008m, v=100m/s, 45°
Mode8	r=0.008m, v=100.1m/s, 45°

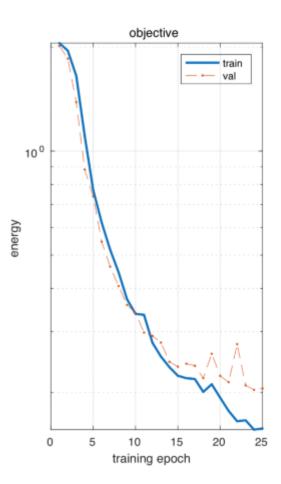
Architecture of CNN



 128×128

Results

Success rate: 95.6%(Train Error (MSE) = 0.0657, Test Error (MSE) = 0.044)



	CNN prediction results (Mode)
Test image 1 : 5 (Mode)	5 (Mode)
	6 (Mode)
	7 (Mode)
	2 (Mode)
	8 (Mode)
	7 (Mode)
	1 (Mode)
	3 (Mode)
	8 (Mode)
	6 (Mode)
	7 (Mode)
	7 (Mode)
	5 (Mode)

Outline:

UQ for Complex systems: its challenge and open issues

- UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
- UQ open issue 2: Curse of Dimensionalities (Sparse grid, Adpative ANOVA, compressive sensing algorithm with basis rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational Expensive Models - Bayesian parameter estimation in largescale regional and global climate models

Pacific Northwest NATIONAL LABORATORY

Uncertainty Quantification for Deen Learning

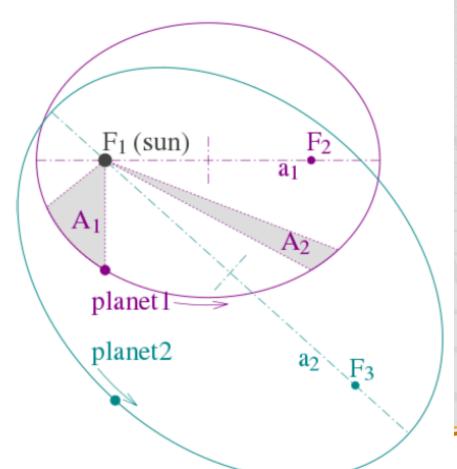
Question: Can we use available observation data to discover the physical laws?

Goal: Enable Data-driven Scientific Discovery?

S. Zhang, G. Lin, Robust data-driven discovery of governing physical laws with error bars, Proceedings of the Royal Society of London. Series A, mathematical, physical and engineering sciences, in press, 2018.

Motivation

For example, Kepler discovered the laws of planetary motion by analyzing observational data.



 Now, we will develop an algorithm that discovers the laws automatically.

General version

Suppose the basis functions are

$$\mathbf{f} = [f_1(x, y, y', \dots, y^{(k)}), \dots, f_M(x, y, y', \dots, y^{(k)})].$$

• The problem is to find a sparse weight vector $\mathbf{w} = [w_1, \dots, w_M]^T$ satisfying

 $0 = \mathbf{fw}.$

After collecting the data, we construct the matrix F:

$$\mathbf{F}_{ij} = f_j(x_i, y_i, y'_i, \dots, y^{(k)}_i),$$

and solve the following sparse regression problem

$$\mathbf{0} = \mathbf{F}\mathbf{w} + \epsilon,$$

where ϵ is the error. Each data induces one line of the matrix.

General version

$$0 = \mathbf{F}\mathbf{w} + \epsilon$$

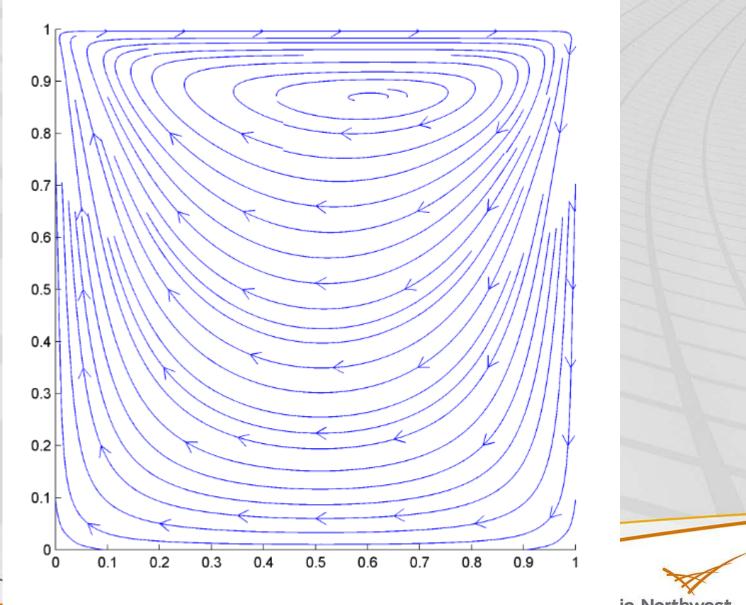
$$0 = \mathbf{F}_{\cdot 1}\mathbf{w}_1 + \cdots + \mathbf{F}_{\cdot M}\mathbf{w}_M + \epsilon$$

- If we use sparse regression directly, we will probably get
 w = 0.
- As a result, we fix one of the weight component as 1 to prevent getting trivial solution.
- For each j ∈ {1,..., M}, fix w_j = 1 and move F_{.j} to left hand side of the equation.

 Consider the following two dimensional incompressible Navier-Stokes equations:

$$rac{\partial ec{\mathbf{u}}}{\partial t} + [ec{\mathbf{u}} \cdot
abla] ec{\mathbf{u}} -
u riangle ec{\mathbf{u}} = -
abla (\mathbf{p}/
ho).$$

- \blacktriangleright **u**: flow velocity.
 - ν : kinematic viscosity.
 - *p*: pressure.
 - ρ : density.



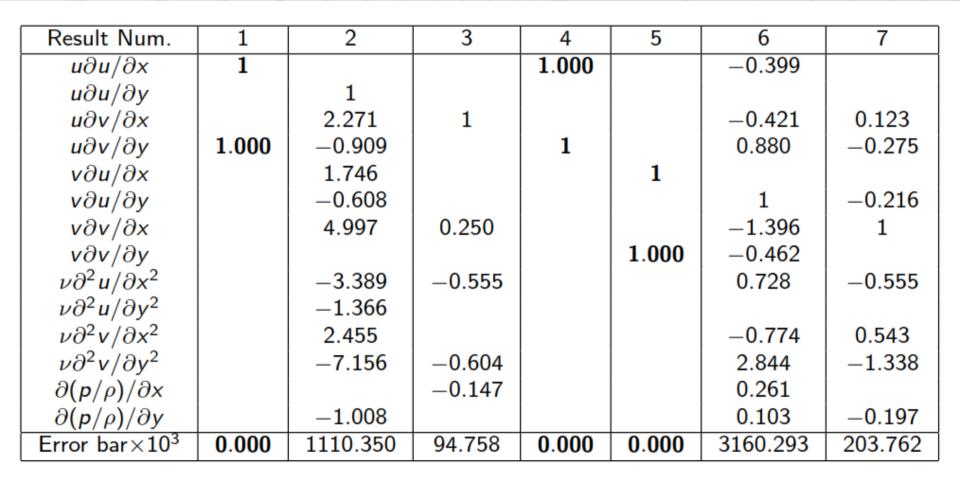
RATIONAL LABORATORY

• If we write $\vec{\mathbf{u}} = (u, v)$, then the equations are

$$\frac{\partial u}{\partial t} = -u\frac{\partial u}{\partial x} - v\frac{\partial u}{\partial y} + \nu\frac{\partial^2 u}{\partial x^2} + \nu\frac{\partial^2 u}{\partial y^2} - \frac{\partial(p/\rho)}{\partial x}$$
$$\frac{\partial v}{\partial t} = -u\frac{\partial v}{\partial x} - v\frac{\partial v}{\partial y} + \nu\frac{\partial^2 v}{\partial x^2} + \nu\frac{\partial^2 v}{\partial y^2} - \frac{\partial(p/\rho)}{\partial y}.$$

We choose the basis functions based on dimensional analysis.
 Then we have the following result

$$\begin{aligned} \frac{\partial u}{\partial t} &= -0.980(\pm 0.002) u \frac{\partial u}{\partial x} - 0.986(\pm 0.001) v \frac{\partial u}{\partial y} + 0.973(\pm 0.002) v \frac{\partial^2 u}{\partial x^2} \\ &+ 0.998(\pm 0.001) v \frac{\partial^2 u}{\partial y^2} - 0.997(\pm 0.001) \frac{\partial(p/\rho)}{\partial x} \\ \frac{\partial v}{\partial t} &= -0.986(\pm 0.001) u \frac{\partial v}{\partial x} - 1.011(\pm 0.001) v \frac{\partial v}{\partial y} + 0.995(\pm 0.001) v \frac{\partial^2 v}{\partial x^2} \\ &+ 1.004(\pm 0.002) v \frac{\partial^2 v}{\partial y^2} - 0.997(\pm 0.000) \frac{\partial(p/\rho)}{\partial y} \\ 0 &= \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}. \end{aligned}$$



Merits

- Our method doesn't need to know much about the form of the equations in advance.
- Our method doesn't require the data to come from the same initial or boundary conditions.
- Our method can find invariant formulas automatically.
- Sparse Baysian regression has better sparsity and robustness than sequential threshold least squares and lasso.
- Our method generates a confidence interval for each parameter and an error bar for the whole equation.
- Random sub-sampling can be done parallelly.

Outline:

UQ for Complex systems: its challenge and open issues

- UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
- UQ open issue 2: Curse of Dimensionalities (Sparse grid, Adpative ANOVA, compressive sensing algorithm with basis rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational Expensive Models - Bayesian parameter estimation in largescale regional and global climate models

Pacific Northwest NATIONAL LABORATORY

Uncertainty Quantification for Deen Learning

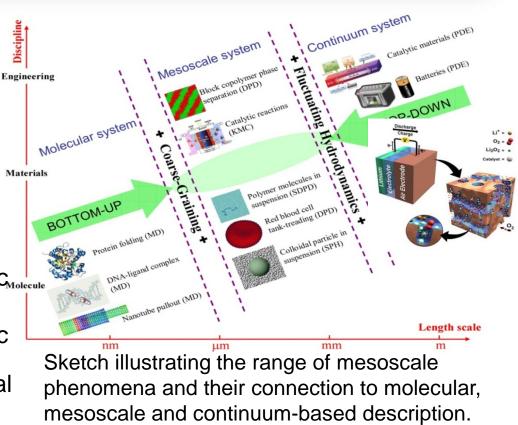
Data Science & Modeling Challenges in Mesoscale Science - Center for Mathematics for Mesoscopic Modeling of Materials (CM⁴) – Guang Lin (Funded by DOE)

Traditional Approach

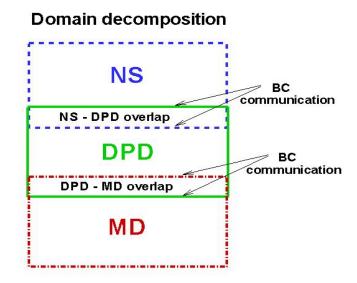
- Mean field theory and analysis
- Continuum equation approximation
- Ab-initio / Molecular Dynamics
- **Objective**: Understand and control the design of multiscale complex systems with desired composition and structure.
- Approach: Mesoscopic model to bridge the gap between microscopic and macroscopic levels.
- Difficulties: Simply bottom-up / topdown scaling fails in general; Scale ambiguity across multiple regimes; Propagation of long-range microscopic interaction.
- **Goal:** Developing efficient mesoscopic simulation *methods*, *algorithms* and *models* applicable to complex physical ⁵⁹ systems across multiple regimes.

Limitation

- Non-equilibrium and dynamic processes.
- Inhomogeneous systems, resolving microscopic details
- Prohibitive expensive computation for large scale systems



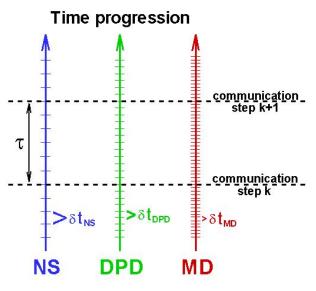
Data-Driven Stochastic Multiscale Challenges in Mesoscale Science



Sensitivity Analysis, Error Control & Uncertainty Quantification

- Sensitivity analysis identify what is the bridge scales
- Example: identifying the sensitive paramete estimating using DFT
- UQ provides a way to economically cha information across scales
- Error control, UQ and Bayesian parameter grained models

Employ Bayesian inference framework to uncertainty using limited number of accur

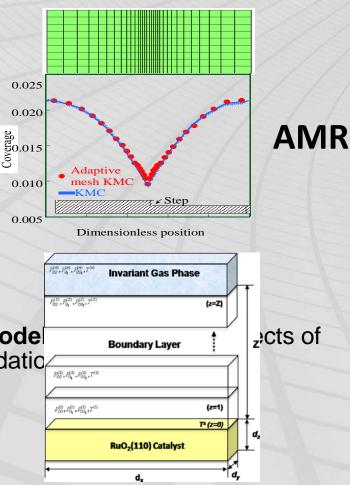


Data-Driven Stochastic Multiscale Challenges in Mesoscale Science

Separation of Time Scales:

- Reduced manifold techniques for overcoming stiffness
- Multiple-event execution in spatial KMC
- Equation-Free method
- Time parareal

Separation of Length Scales: Coupling KMC and stochastic continuum mode Heal division of Mine kinetics of CO oxidation Adaptive Mesh/Model Refinement to overcome the problem of multiple length scales in realistic KMC simulations.



Schematic diagram of the multiscale model to investigate the effects of mass and heat transfer on the heterogeneous reaction kinetics

Mei, D.H. and G. Lin, Effects of heat and mass transfer on the kinetics of CO oxidation over RuO2(1 1 0) catalyst. Catalysis Today, 2011icl 65(1): 56-63: NATIONAL LABORATORY

Cognitive Science

Task

MNIST

EMNIST

Fashion-MNIST

- Cortex & Brain Architecture
- Different areas in our brain will be activated for different tasks

CNNG Base Networks (General, Specialist) Task ClassfierLearning with Colla

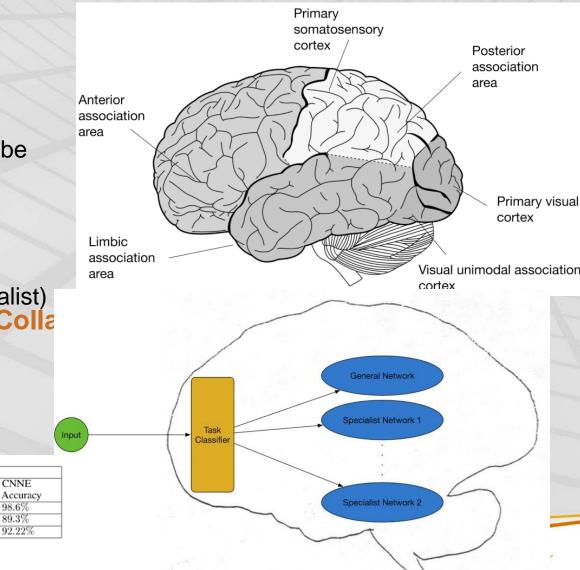


Table 1: Preformance of CNNG and SingleN	N

Preformance of CNNG and SingleNN

CNN accu-

racy

96.35%

83.5%

91.9%

Adaboost

Accuracy

79%

65%

93.6%

SingleNN

Accuracy

97.84%

82.32%

85.56%

CNNG Ac-

curacy (*)

99.65%

90.88%

98.81%

L. Gao, H. Wang, G. Lin, Reflective neural network ensembles, 2019 Internationalist Joint Conference on Artificial Intelligence, August 10, 2019, Macao, P.R. China.

CNNE

98.6%

89.3%

92.22%

Outline:

UQ for Complex systems: its challenge and open issues

- UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
- UQ open issue 2: Curse of Dimensionalities (Sparse grid, Adpative ANOVA, compressive sensing algorithm with basis rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational Expensive Models - Bayesian parameter estimation in largescale regional and global climate models

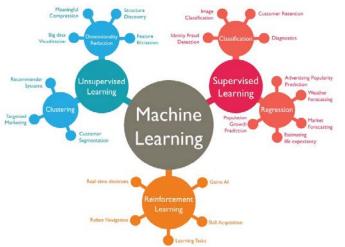
Pacific Northwest NATIONAL LABORATORY

Uncertainty Quantification for Deen Learning

DATA SCIENCE CONSULTING SERVICE

As part of Purdue Integrative Data Science Initiative (IDSI), Data Science Consulting Service will provide hands-on consulting support for data analysis and business analytics in all areas to overcome data science challenges arising in research, education, and business and organization management. Our consultants have advanced degrees and years of experience in deep machine learning, data mining, big data analysis, artificial intelligence, business analytics and computational statistics.

Mission Statement



- Establish a leading role in data science consulting for research, education and industry clients
- Provide self-sustainable, efficient data science consulting service
- Provide a data-science focal point for federal, state and private industry to engage
- Develop a consulting platform for Purdue faculties with different expertise to collaborate and provide a unified consulting service for industry clients

Data Science Consulting Expertise

Business analytics and business intelligence. DSCS staff and consultants have expertise in using advanced statistical analysis, data mining, machine learning and artificial intelligence tools to explore the client's data in support of data-driven decision-making.

► Data and information management. DSCS staff and consultants have experience in using advanced database and data processing tools to manage big, and unstructured data for analysis using a variety of scripting languages and tools.

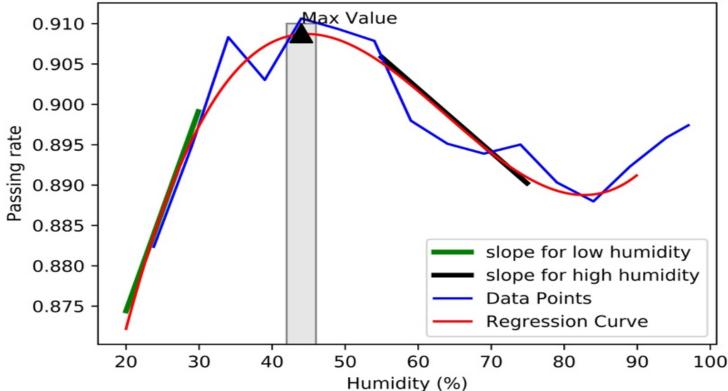
Advanced methodology for data science. DSCS staff and consultants have expertise in methodological aspects of data science including statistical data analysis, machine learning, artificial intelligence, uncertainty quantification, and sensitivity analyses.

Data exploration. DSCS staff and consultants have experience in data visualization, interpretation, and hypothesis-generating research.

High-performance data processing. DSCS staff and consultants have expertise in optimization of code for data processing in CPU and GPU environment.

Case Studies

IMPROVING THE QUALITY OF CHRYSLER CROSSMEMBER CASTINGS

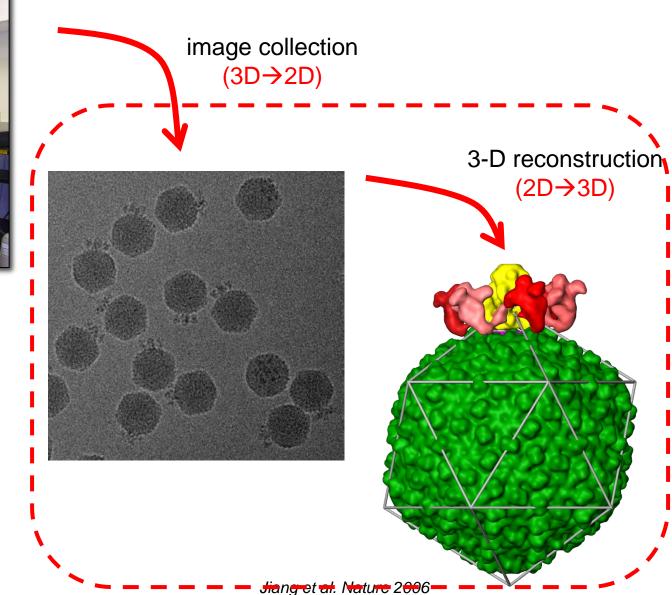


Summary:

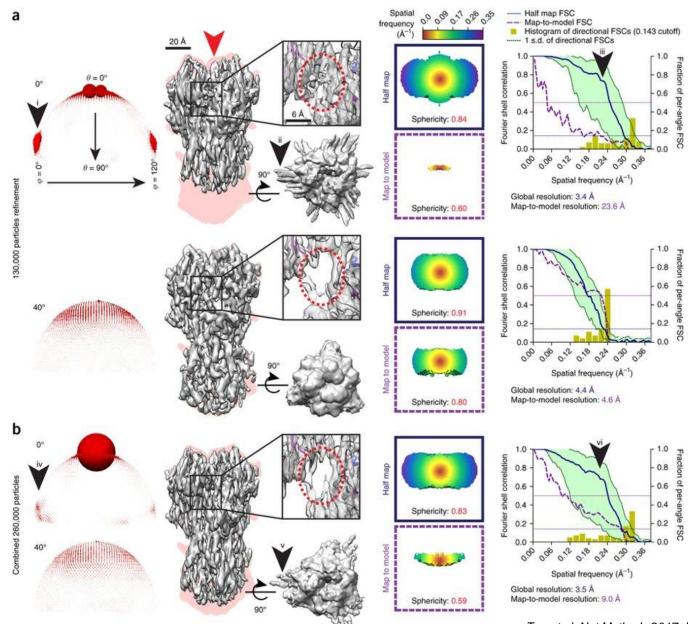
A crossmember is a structural component that undergoes strict X-ray inspection to ensure its quality. The optimal environmental and operational parameter settings are identified for making quality CHRYSLER crossmember castings through a novel optimization algorithm.

Y. Sun, **G. Lin**, Q. Han, D. Yang, C. Vian, Exploratory data analysis for achieving optimal environmental and operational parameter settings for making quality crossmember castings, Die Casting Congress & Exposition, 1, 2019.

Case Study: Deep Learning for Electron Cryo-Microscopy (Cryo-EM) Images



Case Studies: Frequent Problems-Preferred Views

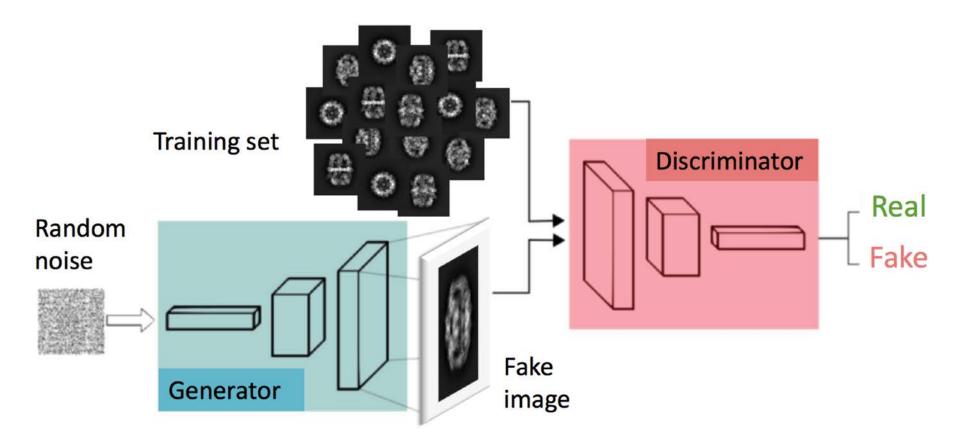


Tan et al. Nat Methods 2017 doi:10.1038/nmeth.4347

Case Studies: Deep Generative Models

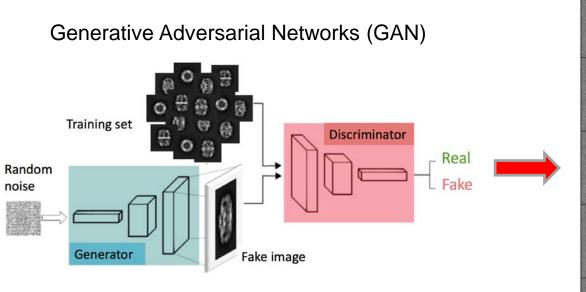
Generative Adversarial Networks (GAN)

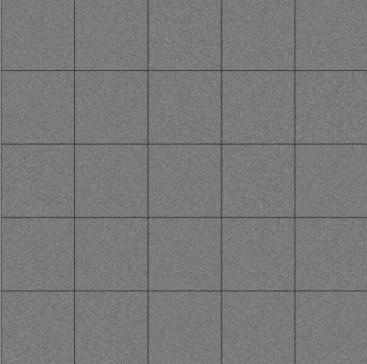
- Model structure: generator, discriminator
- Input: projections from various angles of a bio-structure



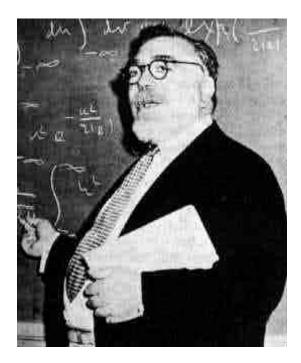
Case Studies: Deep Generative Models

Preliminary Results





Uncertainty Quantification and Scientific Machine Learning for Complex Engineering Systems



"...Because I had worked in the closest possible ways with physicists and engineers, I knew that our data can never be precise..." Norbert Wiener