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Why Uncertainty Quantification?

-Use available data to improve high-fidelity 
model’s predictive capability to enable new 
scientific discovery and make critical decision



UQ for Decision Making: Hurricane Forecasting
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Sensitivity Analysis of Reaction Networks Related to Tissue 
Factor Pathway of Blood Coagulation 

Identify the important coagulation factors 
(reaction rates) and their interactions in 
blood coagulation with respect to total 
thrombin



Sensitivity Analysis of Reaction Networks Related to Tissue 
Factor Pathway of Blood Coagulation 

Identify the sensitivity shift and their interactions in blood coagulation with 
respect to total thrombin when blocking K14 and K15



Deep Learning for Material Science: DNN-based Processing-
Structure-Performance Map for Fibre Reinforced Polymer



Deep Learning for Material Science: DNN-based Processing-
Structure-Performance Map for Fibre Reinforced Polymer



Results



Three columns are: microstructure, true stress field, predicted stress field

Deep Learning for Material Science: DNN-based Processing-
Structure-Performance Map



Outline:
UQ for Complex systems: its challenge and open issues

 UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
 UQ open issue 2: Curse of Dimensionalities (Sparse grid, 

Adpative ANOVA, compressive sensing algorithm with basis 
rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational 
Expensive Models - Bayesian parameter estimation in large-
scale regional and global climate models

Uncertainty Quantification for Deep Learning



Generalized Polynomial Chaos - gPC
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• Weight function determines underlying 
random variable (not necessarily Gaussian)

• Complete basis from Askey scheme

• Polynomials of random variable )(ωξ

• Each set of basis converges in L2 sense
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Xiu & Karniadakis SIAM J. Sci. Comput. 24(2) (2002)



Implementation of gPC method

 Galerkin Projection:

 PC expansion:

 Residual:

 Deterministic system of uα:

 Collocation Projection:

 Interpolation operator: a set of grid points in parameter space.

 Deterministic system on grid points:

 Choices of grid points: full tensor products of Gauss quadrature points –

O(NM); sparse grids – O(Nlog(N)M-1)
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PDF Error
(mean)

Monte-
Carlo: M

GPC:
(P+1)

Speed-Up

Gaussian 2%
0.8%
0.2%

350
2,150
33,200

56
120
220

6.25
18
151

Uniform 0.2%
0.018%
0.001%

13,000
1,580,000
610,000,000

10
20
35

1,300
79,000
17,430,000

Computational Speed-Up

Lucor & Karniadakis, Generalized Polynomial Chaos and Random Oscillators
Int. J. Num. Meth. Eng., vol. 60, 2004



Advantage of gPC
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Limitations of gPC
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Outline:
UQ for Complex systems: its challenge and open issues

 UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
 UQ open issue 2: Curse of Dimensionalities (Sparse grid, 

Adpative ANOVA, compressive sensing algorithm with basis 
rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational 
Expensive Models - Bayesian parameter estimation in large-
scale regional and global climate models

Uncertainty Quantification for Deep Learning



Open Issue 1: Parametric Discontinuities/Bifurcations
- Multi-Element Probabilistic Collocation Method 

(ME-PCM)

 Decompose into non-overlapping elements

 Define

 Perform PCM on each element.  No        requirement on 
boundaries  (measure 0).

 Numerically reconstruct  local polynomial chaos basis on 
each element,  orthogonal with respect to

pdf

1e 2e 3e

 Define new random variable on the restricted space 

with conditional PDF

choose spatial discretization methodLin et al., CiSE, 9(2) 21-
29, 2007



Outline:
UQ for Complex systems: its challenge and open issues

 UQ open issue 1: Discontinuities (ME-gPC, ME-PCM, et. al)
 UQ open issue 2: Curse of Dimensionalities (Sparse grid, 

Adaptive ANOVA, compressive sensing algorithm with basis 
rotation, et. al)

 UQ open issue 3: Heterogeneous big data & Computational 
Expensive Models - Bayesian parameter estimation in large-
scale regional and global climate models

Uncertainty Quantification for Deep Learning



Open Issue 2: Curse of Dimensionality – Multi-Element 
Probabilistic Collocation Method (ME-PCM)

Choice of N-dimensional approximation operator:           

 Tensor product Lagrangian interpolation 

 Smolyak sparse grid approximation  (Smolyak, 1963) 

1D interp. rule in dimension i

interpolation points

interpolatory for nested 1D rules

sparse

interpolation orders

tensor product
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Compressive sensing for gPC expansion

measurement matrix signal observation

• H. Lei, X. Yang, B. Zheng, G. Lin, N. Baker, Constructing Surrogate Models of Complex Systems 
with Enhanced Sparsity: Quantifying the Influence of Conformational Uncertainty in Biomolecular 
Solvation, SIAM Multiscale Modeling and Simulation, 13(4): 1327-1353, 2016.

• X. Yang, H. Lei, N. Baker, G. Lin*, Enhancing sparsity of Hermite polynomial expansions by iterative 
rotations, Journal of Computational Physics, 307: 94-09, 2016.
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Uncertainty Quantification and Bayesian Parameter Estimation in 
Convective Cloud scheme using Large-Scale, Heterogeneous Data

Yang, B., Qian, Y., Lin, G., Leung, R., and Zhang, Y., Atmos. Chem. 
Phys. 11, 31769-31817, doi:10.5194/acpd-11-31769-2011, 2011.

Five Parameters

Observational Constrain

A l i

• Downdraft Rate
• Entrainment Rate
• CAPE Consumption Time
• TKE for Shallow Convection
• Starting Height of Downdraft

GPCP daily 
precipitation

(UW) Daily 1/8-
degree gridded 
meteorological data
(Maurer et al., 2002)

Impact of Optimization on Other Variables
(added 2-m air temperature, 10-m wind speed)



Bayesian Parameter Estimation of Convection Scheme on Regional 
Climate Model using SAA

Atmos. Chem. Phys, 
doi:10.5194/acp-12-2409-2012, 
2012



Simulated precipitation
(Standard CAM5.1)

Observed Precipitation 
(TRMM & GPCP, 2001-
2004)

Optimal Parameter Estimation in Community Atmosphere Models -
Motivation on Parameter Tuning in Deep Convective Precipitation



Parameter Default Minimum Maximum Description

c0
45E-3
5.9E-3

1E-3
1E-3

20E-3
20E-3

Deep convection precipitation 
efficiency

dmpdz
-1.0E-3
-1.0E-3

-2.0E-3
-2.0E-3

0
0

Parcel fractional mass entrainment 
rate

Tau
3600
3600

1800
1800

14400
14400 Consumption time scale

Capelmt 70 20 200
Threshold value for CAPE for deep 

convection

ke 1.0E-6 0.5E-6 10E-6 Evaporation efficiency parameter

alfa 0.1 0.05 0.6
Initial cloud downdraft mass flux

edratio 2 1 3
Ratio of downdraft entrainment to 
updraft

dsliq 8 4 24
Radius of detrained liquid from 
convection

dsice 25 10 50
Radius of detrained ice from 
convection

Blue: Ocean    Red: 
Land

Methodology: Selected 12 parameters in ZM 
scheme



TRMM/GPCP

Default

4-year mean 
precipitation
(mm/day, 
2001-2004)

Optimal by matching deep 
convective precipitation 

J. Geophys. Res., 
doi:10.1029/2012JD018213

Bayesian Parameter 
Estimation of Deep 
Convection Scheme in 
Global Climate Model
2001-2004
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Data Science & Modeling Challenges in Mesoscale Science
- Center for Mathematics for Mesoscopic Modeling of Materials (CM4) –
Guang Lin (Funded by DOE)

Objective: Understand and control 
the design of multiscale complex 
systems with desired composition 
and structure.
Approach: Mesoscopic model to 
bridge the gap between microscopic 
and macroscopic levels.
Difficulties: Simply bottom-up / top-
down scaling fails in general; Scale 
ambiguity across multiple regimes;                                                 
Propagation of long-range microscopic 
interaction.
Goal: Developing efficient mesoscopic 
simulation methods, algorithms and 
models applicable to complex  physical 
systems across multiple regimes.

Sketch illustrating the range of mesoscale 
phenomena and their connection to molecular, 
mesoscale and continuum-based description. 

Traditional Approach Limitation

- Mean field theory and analysis

- Continuum equation approximation

- Ab-initio / Molecular Dynamics

- Non-equilibrium and dynamic processes.

- Inhomogeneous systems, resolving microscopic details

- Prohibitive expensive computation for large scale systems



Data-Driven Stochastic Multiscale 
Challenges in Mesoscale Science

Sensitivity Analysis, Error Control & Uncertainty 
Quantification

Sensitivity analysis - identify what is the useful information to 
bridge scales

Example: identifying the sensitive parameters in KMC for 
estimating using DFT
UQ – provides a way to economically characterize useful 
information across scales
Error control, UQ and Bayesian parameter calibration for coarse-
grained models
Employ Bayesian inference framework to quantify rate 
uncertainty using limited number of accurate DFT calculations60



Data-Driven Stochastic Multiscale 
Challenges in Mesoscale Science

Coupling KMC and stochastic continuum model to study the the effects of 
heat and mass transfer on the kinetics of CO oxidation over RuO2 (110) 
catalyst

 

0.005

0.010

0.015

0.020

0.025

Adaptive 
mesh KMC
KMC

Dimensionless position

Step

Mei, D.H. and G. Lin, Effects of heat and mass transfer on the kinetics of CO 
oxidation over RuO2(1 1 0) catalyst. Catalysis Today, 2011. 165(1): 56-63.

Schematic diagram of the multiscale
model to investigate the effects of
mass and heat transfer on the
heterogeneous reaction kinetics

Separation of Length Scales: 
Multiple length scale KMC
Adaptive Mesh/Model Refinement to 
overcome the problem of multiple length 
scales in realistic KMC simulations.

Separation of Time Scales: 
Reduced manifold techniques for 
overcoming stiffness
Multiple-event execution in spatial KMC
Equation-Free method
Time parareal 

AMR



Deep Learning with Collaborative Neural Network Groups

Cognitive Science
- Cortex & Brain Architecture
- Different areas in our brain will be 
activated
for different tasks

CNNG
Base Networks (General, Specialist)
Task Classifier

L. Gao, H. Wang, G. Lin, Reflective neural network ensembles, 2019 International 
Joint Conference on Artificial Intelligence, August 10, 2019, Macao, P.R. China.
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As part of Purdue Integrative Data Science Initiative (IDSI), 
Data Science Consulting Service will provide hands-on 
consulting support for data analysis and business analytics 
in all areas to overcome data science challenges arising in 
research, education, and business and organization 
management. Our consultants have advanced degrees and 
years of experience in deep machine learning, data mining, 
big data analysis, artificial intelligence, business analytics 
and computational statistics.

DATA SCIENCE CONSULTING SERVICE



Mission Statement

Establish a leading role in data science consulting for research, 
education and industry clients
Provide self-sustainable, efficient data science consulting service  
Provide a data-science focal point for federal, state and private 
industry to engage
Develop a consulting platform for Purdue faculties with different 
expertise to collaborate and provide a unified consulting service for 
industry clients



Data Science Consulting Expertise
Business analytics and business intelligence. DSCS staff and 

consultants have expertise in using advanced statistical analysis, data 
mining, machine learning and artificial intelligence tools to explore the 
client's data in support of data-driven decision-making.

Data and information management. DSCS staff and consultants have 
experience in using advanced database and data processing tools to 
manage big, and unstructured data for analysis using a variety of scripting 
languages and tools.

Advanced methodology for data science. DSCS staff and consultants 
have expertise in methodological aspects of data science including 
statistical data analysis, machine learning, artificial intelligence, uncertainty 
quantification, and sensitivity analyses.

Data exploration. DSCS staff and consultants have experience in data 
visualization, interpretation, and hypothesis-generating research.

High-performance data processing. DSCS staff and consultants have 
expertise in optimization of code for data processing in CPU and GPU 
environment.



Case Studies
IMPROVING THE QUALITY OF CHRYSLER CROSSMEMBER CASTINGS

Summary:
A crossmember is a structural component that undergoes strict X-ray 
inspection to ensure its quality. The optimal environmental and operational 
parameter settings are identified for making quality CHRYSLER 
crossmember castings through a novel optimization algorithm.

Y. Sun, G. Lin, Q. Han, D. Yang, C. Vian, Exploratory data analysis for achieving optimal environmental and operational 
parameter settings for making quality crossmember castings, Die Casting Congress & Exposition, 1, 2019.

https://cscar.research.umich.edu/case-studies/path-modeling/


Case Study: Deep Learning for Electron Cryo-
Microscopy (Cryo-EM) Images

image collection
(3D2D)

3-D reconstruction
(2D3D)

Jiang et al. Nature 2006



Case Studies: Frequent Problems-Preferred Views

Tan et al. Nat Methods 2017 doi:10.1038/nmeth.4347



Case Studies: Deep Generative Models

Generative Adversarial Networks (GAN)
• Model structure: generator, discriminator
• Input: projections from various angles of a bio-structure 



Case Studies: Deep Generative Models

Preliminary Results

Generative Adversarial Networks (GAN)



Uncertainty Quantification and Scientific Machine Learning 
for Complex Engineering Systems
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“…Because I had worked in the closest possible ways with

physicists and engineers, I knew that our data can never be precise…”

Norbert Wiener
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