ECE595 / STAT598: Machine Learning I Course Overview

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Machine Learning: Your Interpretation?

https://www.kaggle.com/benhamner/nips-2015-papers/discussion/22778

Elements of Learning?

- Data
- Computer
- Algorithm

What is Learning? What is NOT learning?

- You are given a bag of US coins.
- Your task: Build a classifier.
- Four classes: Penny, Nickel, Dime, Quarter.

Approach 1: Learning

- You measure mass and size.
- Put each coin to its class. Plot a 2D histogram.
- Create the classifier.

Approach 2: Design

- You go to United States Mint to ask ideal mass and size of the coins.
- You ask them to give you the measurement error. Plot 2D distribution.
- Create the classifier.

Which one fits learning? Which one fits design?

- Determining the age at which a particular medical test should be performed.
- Classifying numbers into primes and non-primes.
- Detecting potential fraud in credit card charges.
- Determining the time it would take a falling object to hit the ground.
- Determining the optimal cycle for traffic lights in a busy intersection.

Machine Learning Model

- Data points x_1, \ldots, x_N .
- Labels y_1, \ldots, y_N .

- Where does a data point x_n come from?
- How is a label y_n defined?
- What do we mean by a learning algorithm?
- What is a classifier?
- How to evaluate a classifier?

Machine Learning Model

See Learning from Data (Chapter 1).

Learning Algorithm

Types of Learning

- Supervised Learning: Labels available.
- Unsupervised Learning: No label.

Outline of ECE 595

Part 1: Mathematical Background (2 weeks)

- Linear Regression and Optimization
- Please review linear algebra, probability, optimization in the Tutorial Note.

• Part 2: Classification (5 weeks)

- Methods to train linear classifiers
- Feature analysis, Geometry, Bayesian decision rule, logistic regression, perceptron algorithm, support vector machine

• Part 3: Handling Uncertainty (3 weeks)

- Imperfect data: noisy label, unbalanced data, missing data, knowledge transfer
- Robustness study: adversarial attack and defense

Part 4: Learning Theory (5 weeks)

- Evaluation of a classifier.
- Feasibility of learning, VC dimension, bias-variance, validation

Textbook and References

- Pattern Classification, by Duda, Hart and Stork, 2000.
- Pattern Recognition and Machine Learning, by Bishop, 2006.
- Learning from Data, by Abu-Mostafa, Magdon-Ismail and Lin, 2012.
- **Elements of Statistical Learning**, by Hastie, Tibshirani and Friedman, 2009.

Pre-Requisites

Linear Algebra:

- Matrix-vector multiplication $\mathbf{A}\mathbf{x}$, transpose \mathbf{A}^T , symmetric matrices $\mathbf{A} = \mathbf{A}^T$, norm $\|\mathbf{x}\|$, trace $\text{Tr}(\mathbf{A})$, inverse \mathbf{A}^{-1} , determinant $|\mathbf{A}|$, eigenvalue and eigenvector $\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T$.
- Gilbert Strang, Linear Algebra and Its Applications, 5th Edition

Probability:

- Random variable X, probability density function p(x), cumulative distribution function F(x), expectation $\mathbb{E}[X]$, variance $\mathrm{Var}[X]$, function of random variable $\mathbb{E}[g(X)]$, joint Gaussian, Law of Large Number, Central Limit Theorem.
- Dimitri Bertsekas, Introduction to Probability, Athena Scientific, 2008, 2nd Edition.

Optimization:

- Convex function, convex set, operations which preserve convexity,
 Lagrange multiplier, KKT conditions, primal optimal, dual optimal,
 complementary slackness, constrained optimization, duality theorem.
- Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge 2004.

Reading List

Tutorials

- Tutorial on Linear Algebra https://engineering.purdue.edu/ChanGroup/ECE595/files/ Tutorial01_handout.pdf
- Tutorial on Probability https://engineering.purdue.edu/ChanGroup/ECE595/files/ Tutorial02_handout.pdf