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Linear Span

Given a set of vectors {a1, . . . , ad}, the span is the set of all possible
linear combinations of these vectors.

span

{
a1, . . . , ad

}
=

{
z | z =

d∑
j=1

αjaj

}
(1)

Which of the following sets of vectors can span R3?
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Geometry of Linear Regression

Given θ, the product Aθ can be viewed as

Aθ =

 | | |
a1 a2 . . . ad
| | |


θ1...
θd

 =
d∑

j=1

θjaj .

So the set of all possible Aθ’s is equivalent to span{a1, . . . , ad}. Define
the range of A as R(A) = {ŷ | ŷ = Aθ}. Note that y 6∈ R(A).
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Orthogonality Principle

Consider the error e = y − Aθ.

For the error to minimize, it must be orthogonal to R(A), which is
the span of the columns.

This orthogonality principle means that aTj e = 0 for all

j = 1, . . . , d , which implies ATe = 0.
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Normal Equation

The orthogonality principle, which states that ATe = 0, implies that
AT (y − Aθ) = 0 by substituting e = y − Aθ.

This is called the normal equation:

ATAθ = ATy . (2)

The predicted value is

ŷ = Aθ̂ = A(ATA)−1ATy

The matrix P
def
= A(ATA)−1AT is a projection onto the span of

{a1, . . . , ad}, i.e., the range of A.

P is called the projection matrix. It holds that PP = P.

The error e = y − ŷ is

e = y − A(ATA)−1ATy

= (I − P)y .
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Over-determined and Under-determined Systems

Assume A has full column rank.
Over-determined A: Tall and skinny. θ̂ = (ATA)−1ATy .
Under-determined A: Fat and short. θ̂ = AT (AAT )−1y .
If A is under-determined, then there exists a non-trivial null space
N (A) = {θ | Aθ = 0}.
This implies that if θ̂ is a solution, then θ̂ + θ0 is also a solution as
long as θ0 ∈ N (A). (Why?)
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Minimum-Norm Solution

Assume A is fat and has full row rank.

Since A is fat, there exists infinitely many θ̂ such that Aθ̂ = y .

So we need to pick one in order to be unique.

It turns out that θ̂ = AT (AAT )−1y is the solution to

θ̂ = argmin
θ

‖θ‖2 subject to Aθ = y . (3)

(You can solve this problem using Lagrange multiplier. See Appendix.)

This is called the minimum-norm solution.
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What if Rank-Deficient?

If A is rank-deficient, then ATA is not invertible
Approach 1: Regularization. See Lecture 2.
Approach 2: Pseudo-inverse. Decompose A = USV T .
U ∈ RN×N , with UTU = I . V ∈ Rd×d , with V TV = I .
The diagonal block of S ∈ RN×d is diag{s1, . . . , sr , 0, . . . , 0}.
The solution is called the pseudo-inverse:

θ̂ = VS+UTy , (4)

where S+ = diag{1/s1, . . . , 1/sr , 0, . . . , 0}.
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Reading List

Linear Algebra

Gilbert Strang, Linear Algebra and Its Applications, 5th Edition.

Carl Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.

Univ. Waterloo Matrix Cookbook. https:

//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Linear Regression

Stanford CS 229 (Note on Linear Algebra)
http://cs229.stanford.edu/section/cs229-linalg.pdf

Elements of Statistical Learning (Chapter 3.2)
https://web.stanford.edu/~hastie/ElemStatLearn/

Learning from Data (Chapter 3.2)
https://work.caltech.edu/telecourse

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
http://cs229.stanford.edu/section/cs229-linalg.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/
https://work.caltech.edu/telecourse
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Appendix
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Solving the Minimum Norm problem

Consider this problem

θ̂ = argmin
θ

‖θ‖2 subject to Aθ = y . (5)

The Lagrangian is

L(θ,λ) = ‖θ‖2 + λT (Aθ − y).

Take derivative with respect to θ and λ yields

∇θL = 2θ + ATλ = 0, ∇λL = Aθ − y = 0

First equation gives us θ = −ATλ/2.

Substitute into second equation yields λ = −2(AAT )−1y .

Therefore, θ = AT (AAT )−1y .




