ECE595 / STAT598: Machine Learning I Lecture 1.2: Geometry

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

Outline

Mathematical Background

- Lecture 1: Linear regression: A basic data analytic tool
- Lecture 2: Regularization: Constraining the solution
- Lecture 3: Kernel Method: Enabling nonlinearity

Lecture 1: Linear Regression

- Linear Regression
- Notation
- Loss Function
- Solving the Regression Problem
- Geometry
- Projection
- Minimum-Norm Solution
- Pseudo-Inverse

Linear Span

Given a set of vectors $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}\right\}$, the span is the set of all possible linear combinations of these vectors.

$$
\begin{equation*}
\operatorname{span}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}\right\}=\left\{\boldsymbol{z} \mid \boldsymbol{z}=\sum_{j=1}^{d} \alpha_{j} \boldsymbol{a}_{j}\right\} \tag{1}
\end{equation*}
$$

Which of the following sets of vectors can span \mathbb{R}^{3} ?

Geometry of Linear Regression

Given $\boldsymbol{\theta}$, the product $\boldsymbol{A} \boldsymbol{\theta}$ can be viewed as

$$
\boldsymbol{A} \boldsymbol{\theta}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \ldots & \boldsymbol{a}_{d} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right]=\sum_{j=1}^{d} \theta_{j} \boldsymbol{a}_{j}
$$

So the set of all possible $\boldsymbol{A} \boldsymbol{\theta}$'s is equivalent to $\operatorname{span}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{\boldsymbol{d}}\right\}$. Define the range of \boldsymbol{A} as $\mathcal{R}(\boldsymbol{A})=\{\widehat{\boldsymbol{y}} \mid \widehat{\boldsymbol{y}}=\boldsymbol{A} \boldsymbol{\theta}\}$. Note that $\boldsymbol{y} \notin \mathcal{R}(\boldsymbol{A})$.

Orthogonality Principle

- Consider the error $\boldsymbol{e}=\boldsymbol{y}-\boldsymbol{A} \boldsymbol{\theta}$.
- For the error to minimize, it must be orthogonal to $\mathcal{R}(\boldsymbol{A})$, which is the span of the columns.
- This orthogonality principle means that $\boldsymbol{a}_{j}^{T} \boldsymbol{e}=0$ for all $j=1, \ldots, d$, which implies $\boldsymbol{A}^{T} \boldsymbol{e}=0$.

Normal Equation

- The orthogonality principle, which states that $\boldsymbol{A}^{T} \boldsymbol{e}=\mathbf{0}$, implies that $\boldsymbol{A}^{T}(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{\theta})=\mathbf{0}$ by substituting $\boldsymbol{e}=\boldsymbol{y}-\boldsymbol{A} \boldsymbol{\theta}$.
- This is called the normal equation:

$$
\begin{equation*}
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{\theta}=\boldsymbol{A}^{T} \boldsymbol{y} \tag{2}
\end{equation*}
$$

- The predicted value is

$$
\widehat{y}=\boldsymbol{A} \widehat{\boldsymbol{\theta}}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{y}
$$

- The matrix $\boldsymbol{P} \stackrel{\text { def }}{=} \boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}$ is a projection onto the span of $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}\right\}$, i.e., the range of \boldsymbol{A}.
- \boldsymbol{P} is called the projection matrix. It holds that $\boldsymbol{P} \boldsymbol{P}=\boldsymbol{P}$.
- The error $\boldsymbol{e}=\boldsymbol{y}-\hat{\boldsymbol{y}}$ is

$$
\begin{aligned}
\boldsymbol{e} & =\boldsymbol{y}-\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{y} \\
& =(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{y}
\end{aligned}
$$

Over-determined and Under-determined Systems

- Assume \boldsymbol{A} has full column rank.
- Over-determined \boldsymbol{A} : Tall and skinny. $\widehat{\boldsymbol{\theta}}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{y}$.
- Under-determined \boldsymbol{A} : Fat and short. $\widehat{\boldsymbol{\theta}}=\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{y}$.
- If \boldsymbol{A} is under-determined, then there exists a nontrivial null space $\mathcal{N}(\boldsymbol{A})=\{\boldsymbol{\theta} \mid \boldsymbol{A} \boldsymbol{\theta}=0\}$.
- This implies that if $\widehat{\boldsymbol{\theta}}$ is a solution, then $\widehat{\boldsymbol{\theta}}+\boldsymbol{\theta}_{0}$ is also a solution as long as $\boldsymbol{\theta}_{0} \in \mathcal{N}(\boldsymbol{A})$. (Why?)

over-determined

under-determined

Minimum-Norm Solution

- Assume \boldsymbol{A} is fat and has full row rank.
- Since \boldsymbol{A} is fat, there exists infinitely many $\widehat{\boldsymbol{\theta}}$ such that $\boldsymbol{A} \widehat{\boldsymbol{\theta}}=\boldsymbol{y}$.
- So we need to pick one in order to be unique.
- It turns out that $\widehat{\boldsymbol{\theta}}=\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{y}$ is the solution to

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}}\|\boldsymbol{\theta}\|^{2} \text { subject to } \boldsymbol{A} \boldsymbol{\theta}=\boldsymbol{y} . \tag{3}
\end{equation*}
$$

(You can solve this problem using Lagrange multiplier. See Appendix.)

- This is called the minimum-norm solution.

What if Rank-Deficient?

- If \boldsymbol{A} is rank-deficient, then $\boldsymbol{A}^{T} \boldsymbol{A}$ is not invertible
- Approach 1: Regularization. See Lecture 2.
- Approach 2: Pseudo-inverse. Decompose $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}$.
- $\boldsymbol{U} \in \mathbb{R}^{N \times N}$, with $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I} . \boldsymbol{V} \in \mathbb{R}^{d \times d}$, with $\boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}$.
- The diagonal block of $\boldsymbol{S} \in \mathbb{R}^{N \times d}$ is $\operatorname{diag}\left\{s_{1}, \ldots, s_{r}, 0, \ldots, 0\right\}$.
- The solution is called the pseudo-inverse:

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}=\boldsymbol{V} \boldsymbol{S}^{+} \boldsymbol{U}^{T} \boldsymbol{y} \tag{4}
\end{equation*}
$$

where $\boldsymbol{S}^{+}=\operatorname{diag}\left\{1 / s_{1}, \ldots, 1 / s_{r}, 0, \ldots, 0\right\}$.

Reading List

Linear Algebra

- Gilbert Strang, Linear Algebra and Its Applications, 5th Edition.
- Carl Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
- Univ. Waterloo Matrix Cookbook. https: //www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Linear Regression

- Stanford CS 229 (Note on Linear Algebra) http://cs229.stanford.edu/section/cs229-linalg.pdf
- Elements of Statistical Learning (Chapter 3.2) https://web.stanford.edu/~hastie/ElemStatLearn/
- Learning from Data (Chapter 3.2) https://work.caltech.edu/telecourse

Appendix

Solving the Minimum Norm problem

Consider this problem

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}}\|\boldsymbol{\theta}\|^{2} \text { subject to } \boldsymbol{A} \boldsymbol{\theta}=\boldsymbol{y} \tag{5}
\end{equation*}
$$

The Lagrangian is

$$
\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda})=\|\boldsymbol{\theta}\|^{2}+\boldsymbol{\lambda}^{T}(\boldsymbol{A} \boldsymbol{\theta}-\boldsymbol{y})
$$

Take derivative with respect to $\boldsymbol{\theta}$ and $\boldsymbol{\lambda}$ yields

$$
\nabla_{\boldsymbol{\theta}} \mathcal{L}=2 \boldsymbol{\theta}+\boldsymbol{A}^{T} \boldsymbol{\lambda}=0, \quad \nabla_{\boldsymbol{\lambda}} \mathcal{L}=\boldsymbol{A} \boldsymbol{\theta}-\boldsymbol{y}=0
$$

- First equation gives us $\boldsymbol{\theta}=-\boldsymbol{A}^{T} \boldsymbol{\lambda} / 2$.
- Substitute into second equation yields $\boldsymbol{\lambda}=-2\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{y}$.
- Therefore, $\boldsymbol{\theta}=\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{y}$.

