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Mathematical Background

Lecture 1: Linear regression: A basic data analytic tool

Lecture 2: Regularization: Constraining the solution

Lecture 3: Kernel Method: Enabling nonlinearity

Lecture 2: Regularization

Ridge Regression
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Algorithm
Application
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Ridge Regression

Applies to both over and under determined systems.

The loss function of the ridge regression is defined as

J(θ)
def
= ‖Aθ − y‖2 + λ‖θ‖2

‖θ‖2 Regularization function

λ: Regularization parameter

The solution of the ridge regression is

∇θJ(θ) = ∇θ

{
‖Aθ − y‖2 + λ‖θ‖2

}
= 2AT (Aθ − y) + 2λθ = 0,

which gives us θ̂ = (ATA + λI )−1ATy .

Probabilistic interpretation: See Appendix.
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Change in Eigen-values

Ridge regression improves the eigen-values:

Eigen-decomposition of ATA:

ATA = USUT � 0,

where U = eigen-vector matrix, S = eigen-value matrix.

S is a diagonal matrix with non-negative entries:

S =


♣
♣
♣

0


See Tutorial on “Linear Algebra”.

Therefore, S + λI is always positive for any λ > 0, implying that

ATA + λI = U(S + λI )UT � 0.
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Regularization Parameter λ

The solution of the ridge regression is

θ̂ = (ATA + λI )−1ATy

If λ→ 0, then θ̂ = (ATA)−1ATy :

J(θ) = ‖Aθ − y‖2 +�
���

λ‖θ‖2.
If λ→∞, then θ̂ = 0:

J(θ) = ������‖Aθ − y‖2 + λ‖θ‖2.
There is a trade-off curve between the two terms by varying λ.
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Comparing Vanilla and Ridge

Suppose y = Aθ∗ + e for some ground truth θ∗ and noise vector e. Then,
the vanilla linear regression will give us

θ̂ = (ATA)−1ATy

= (ATA)−1AT (Aθ∗ + e)

= θ∗ + (ATA)−1ATe

If e has zero mean and variance σ2, we can show that

E[θ̂] = θ∗,

Cov[θ̂] = σ2(ATA)−1.

Therefore, the regression coefficients are unbiased but have large variance.
We can further show that the mean-squared error (MSE) is

MSE(θ̂) = σ2Tr
{

(ATA)−1
}
.
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Comparing Vanilla and Ridge

On the other hand, if we use ridge regression, then

θ̂(λ) = (ATA + λI )−1AT (Aθ∗ + e)

= (ATA + λI )−1ATAθ∗ + (ATA + λI )−1ATe.

Again, if e is zero mean and has a variance σ2, then (See Reading List)

E[θ̂(λ)] = (ATA + λI )−1ATAθ∗

Cov[θ̂(λ)] = σ2(ATA + λI )−1ATA(ATA + λI )−T

MSE[θ̂(λ)] = σ2Tr
{
W λ(ATA)−1W T

λ

}
+ θ∗T (W λ − I )T (W λ − I )θ∗,

where W λ
def
= (ATA + λI )−1ATA. In particular, we can show that

Theorem (Theobald 1974)

For λ < 2σ2‖θ∗‖−2, it holds that MSE(θ̂(λ)) < MSE(θ̂).
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Geometric Interpretation

The following three problems are equivalent

θ∗λ = argmin
θ

‖Aθ − y‖2 + λ‖θ‖2

θ∗α = argmin
θ

‖Aθ − y‖2 subject to ‖θ‖2 ≤ α

θ∗ε = argmin
θ

‖θ‖2 subject to ‖Aθ − y‖2 ≤ ε

under an appropriately chosen tuple (λ, α, ε).

Larger λ = Smaller α
θ∗’s magnitude is tighter bounded
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Choosing λ

Because the following three problems are equivalent

θ∗λ = argmin
θ

‖Aθ − y‖2 + λ‖θ‖2

θ∗α = argmin
θ

‖Aθ − y‖2 subject to ‖θ‖2 ≤ α

θ∗ε = argmin
θ

‖θ‖2 subject to ‖Aθ − y‖2 ≤ ε

We can seek λ that satisfies ‖θ‖2 ≤ α:

You know how much ‖θ‖2 would be appropriate.

We can seek λ that satisfies ‖Aθ − y‖2 ≤ ε
You know how much ‖Aθ − y‖2 would be tolerable.

Other approaches:

Akaike’s information criterion: Balance model fit with complexity
Cross validation: Leave one out
Generalized cross-validation: Cross-validation + weight




