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Mathematical Background
@ Lecture 1: Linear regression: A basic data analytic tool
@ Lecture 2: Regularization: Constraining the solution

o Lecture 3: Kernel Method: Enabling nonlinearity

Lecture 2: Regularization
@ Ridge Regression

o Regularization
o Parameter

@ LASSO Regression
e Sparsity
o Algorithm
e Application
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LASSO Regression

@ An alternative to the Ridge Regression is Least Absolute Shrinkage
and Selection Operator (LASSO)

@ The loss function is
J(0) = [|A6 — y||> + A||0]1

@ Intuition behind LASSO: Many features are not active.
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Interpreting the LASSO Solution

6 = argmin ||A6 — y|> + 6]
0

@ ||@||1 promotes sparsity of €. It is the nearest convex approximation
to [|8]|o, which is the number of non zeros.
@ The difference between /5 and 0!
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!Figure source: http://www.ds100.org/
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Why are Sparse Models Useful?

13.58% 1.21%

@ Images are sparse in transform domains, e.g., Fourier and wavelet.

@ Intuition: There are more low frequency components and less high
frequency components.

@ Examples above: A is the wavelet basis matrix. 8 are the wavelet
coefficients.

@ We can truncate the wavelet coefficients and retain a good image.

@ Many image compression schemes are based on this, e.g., JPEG,
JPEG2000.



LASSO for Image Reconstruction

Image inpainting via KSVD dictionary-learning >

@ y = image with missing pixels. A = a matrix storing a set of trained
feature vectors (called dictionary atoms). € = coefficients.

e minimize |ly — AB||? + \[|0] ;.

@ KSVD = k-means + Singular Value Decomposition (SVD): A method
to train the feature vectors that demonstrate sparse representations.

2Figure is taken from Mairal, Elad, Sapiro, IEEE T-IP 2008
https://ieeexplore.ieee.org/document/4392496



https://ieeexplore.ieee.org/document/4392496
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Shrinkage Operator

The LASSO problem can be solved using a shrinkage operator. Consider a
simplified problem (with A=1)

1
J(0) = Slly = 01" + Ao
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Since the loss is separable, the ,optimization is solved when each
individual term is minimized. The individual problem

6 = argmin {l(y —0)® + )\\9}
9 2
= max(|y| — A, 0)sign(y)

ES\0).

Proof: See Appendix.
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Shrinkage VS Hard Threshold

@ The shrinkage operator looks as follows.
@ Any number between [—\, A] is “shrink” to zero.

@ Try compare with the hard threshold operator Hy(y) =y - 1{|y| > A}
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Algorithms to Solve LASSO Regression

In general, the LASSO problem requires iterative algorithms:

o ISTA Algorithm (Daubechies et al. 2004)
o For k=1,2,...
o vk =0 —27AT(A0" —y).
o 0"t = max(|vk| — X, 0)sign(v¥).
o FISTA Algorithm (Beck-Teboulle 2008)
For k=1,2,...
vk = 0% —27AT(A0% — y).
zK = max(|v¥| — A, 0)sign(v*).
0K = 0% + (1 — ay)z*.
o ADMM Algorithm (Eckstein-Bertsekas 1992, Boyd et al. 2011)
For k=1,2,...
0" = (ATA+ pl) YAy + pzk — u¥)
20 = max(1°1 & uk /ol — A/ p, 0)sign(6** + u¥/p)
o Ukt = uk 4 p(FFT — k1)

@ And many others.
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Example: Crime Rate Data

city | funding hs not-hs <college college4 crime rate
1 40 74 11 31 20
2 32 72 11 43 18
3 57 70 18 16 16
4 31 71 11 25 19
5 67 72 9 29 24
50 66 67 26 18 16

478
494
643
341
773

940

https://web.stanford.edu/~hastie/StatLearnSparsity/data.html

Consider the following two optimizations

01(A) = argmin J1(6) < )a0 - y |2 + A6,

0:()\) = argmin. J>(6) «11146 - y | + A6]%.


https://web.stanford.edu/~hastie/StatLearnSparsity/data.html

Comparison between /-1 and /-2 norm

e Plot 1()) and 62()) vs. A.

@ LASSO tells us which factor appears first.

@ If we are allowed to use only one feature, then % high is the one.
e Two features, then % high + funding.
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Ridge LASSO



Pros and Cons

Ridge Regression

(+) Analytic solution, because the loss function is differentiable.
+) As such, a lot of well-established theoretical guarantees.
+) Algorithm is simple, just one equation.

Limited interpretability, since the solution is usually a dense vector.
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Does not reflect the nature of certain problems, e.g., sparsity.

LASSO
@ (+) Proven applications in many domains, e.g., images and speeches.

@ (+) Echoes particularly well in modern deep learning where parameter
space is huge.

(4) Increasing number of theoretical guarantees for special matrices.

(4) Algorithms are available.

(-) No closed-form solution. Algorithms are iterative.
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Reading List

Ridge Regression
@ Stanford CS 229 Note on Linear Algebra
http://cs229.stanford.edu/section/cs229-1inalg.pdf
@ Lecture Note on Ridge Regression
https://arxiv.org/pdf/1509.09169.pdf
@ Theobald, C. M. (1974). Generalizations of mean square error applied
to ridge regression. Journal of the Royal Statistical Society. Series B
(Methodological), 36(1), 103-106.
LASSO Regression

e ECE/STAT 695 (Lecture 1)
https://engineering.purdue.edu/ChanGroup/ECE695.html

@ Statistical Learning with Sparsity (Chapter 2)
https://web.stanford.edu/~hastie/StatLearnSparsity/

o Elements of Statistical Learning (Chapter 3.4)
https://web.stanford.edu/~hastie/ElemStatLearn/


http://cs229.stanford.edu/section/cs229-linalg.pdf
https://arxiv.org/pdf/1509.09169.pdf
https://engineering.purdue.edu/ChanGroup/ECE695.html
https://web.stanford.edu/~hastie/StatLearnSparsity/
https://web.stanford.edu/~hastie/ElemStatLearn/



