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LASSO Regression

An alternative to the Ridge Regression is Least Absolute Shrinkage
and Selection Operator (LASSO)

The loss function is

J(θ) = ‖Aθ − y‖2 + λ‖θ‖1

Intuition behind LASSO: Many features are not active.
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Interpreting the LASSO Solution

θ̂ = argmin
θ

‖Aθ − y‖2 + λ‖θ‖1

‖θ‖1 promotes sparsity of θ. It is the nearest convex approximation
to ‖θ‖0, which is the number of non-zeros.
The difference between `2 and `1

1:

1Figure source: http://www.ds100.org/
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Why are Sparse Models Useful?

# non-zeros = 33.51% 13.58% 1.21%

Images are sparse in transform domains, e.g., Fourier and wavelet.
Intuition: There are more low frequency components and less high
frequency components.
Examples above: A is the wavelet basis matrix. θ are the wavelet
coefficients.
We can truncate the wavelet coefficients and retain a good image.
Many image compression schemes are based on this, e.g., JPEG,
JPEG2000.
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LASSO for Image Reconstruction

Image inpainting via KSVD dictionary-learning 2

y = image with missing pixels. A = a matrix storing a set of trained
feature vectors (called dictionary atoms). θ = coefficients.

minimize ‖y − Aθ‖2 + λ‖θ‖1.

KSVD = k-means + Singular Value Decomposition (SVD): A method
to train the feature vectors that demonstrate sparse representations.

2Figure is taken from Mairal, Elad, Sapiro, IEEE T-IP 2008
https://ieeexplore.ieee.org/document/4392496

https://ieeexplore.ieee.org/document/4392496
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Shrinkage Operator

The LASSO problem can be solved using a shrinkage operator. Consider a
simplified problem (with A = I )

J(θ) =
1

2
‖y − θ‖2 + λ‖θ‖1

=
d∑

j=1

{
1

2
(yj − θj)2 + λ|θj |1

}
Since the loss is separable, the ,optimization is solved when each
individual term is minimized. The individual problem

θ̂ = argmin
θ

{
1

2
(y − θ)2 + λ|θ|

}
= max(|y | − λ, 0)sign(y)

def
= Sλ(y).

Proof: See Appendix.
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Shrinkage VS Hard Threshold

The shrinkage operator looks as follows.

Any number between [−λ, λ] is “shrink” to zero.

Try compare with the hard threshold operator Hλ(y) = y · 1{|y | ≥ λ}
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Algorithms to Solve LASSO Regression

In general, the LASSO problem requires iterative algorithms:

ISTA Algorithm (Daubechies et al. 2004)

For k = 1, 2, . . .
v k = θk − 2γAT (Aθk − y).
θk+1 = max(|v k | − λ, 0)sign(v k).

FISTA Algorithm (Beck-Teboulle 2008)

For k = 1, 2, . . .
v k = θk − 2γAT (Aθk − y).
zk = max(|v k | − λ, 0)sign(v k).
θk+1 = αkθ

k + (1− αk)zk .

ADMM Algorithm (Eckstein-Bertsekas 1992, Boyd et al. 2011)

For k = 1, 2, . . .
θk+1 = (ATA + ρI )−1(ATy + ρzk − uk)
zk+1 = max(|θk+1 + uk/ρ| − λ/ρ, 0)sign(θk+1 + uk/ρ)
uk+1 = uk + ρ(θk+1 − zk+1)

And many others.
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Example: Crime Rate Data

https://web.stanford.edu/~hastie/StatLearnSparsity/data.html

Consider the following two optimizations

θ̂1(λ) = argmin
θ

J1(θ)
def
= ‖Aθ − y‖2 + λ‖θ‖1,

θ̂2(λ) = argmin
θ

J2(θ)
def
= ‖Aθ − y‖2 + λ‖θ‖2.

https://web.stanford.edu/~hastie/StatLearnSparsity/data.html
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Comparison between `-1 and `-2 norm

Plot θ̂1(λ) and θ̂2(λ) vs. λ.

LASSO tells us which factor appears first.

If we are allowed to use only one feature, then % high is the one.

Two features, then % high + funding.
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Pros and Cons

Ridge Regression

(+) Analytic solution, because the loss function is differentiable.

(+) As such, a lot of well-established theoretical guarantees.

(+) Algorithm is simple, just one equation.

(-) Limited interpretability, since the solution is usually a dense vector.

(-) Does not reflect the nature of certain problems, e.g., sparsity.

LASSO

(+) Proven applications in many domains, e.g., images and speeches.

(+) Echoes particularly well in modern deep learning where parameter
space is huge.

(+) Increasing number of theoretical guarantees for special matrices.

(+) Algorithms are available.

(-) No closed-form solution. Algorithms are iterative.
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Reading List

Ridge Regression

Stanford CS 229 Note on Linear Algebra
http://cs229.stanford.edu/section/cs229-linalg.pdf

Lecture Note on Ridge Regression
https://arxiv.org/pdf/1509.09169.pdf

Theobald, C. M. (1974). Generalizations of mean square error applied
to ridge regression. Journal of the Royal Statistical Society. Series B
(Methodological), 36(1), 103-106.

LASSO Regression

ECE/STAT 695 (Lecture 1)
https://engineering.purdue.edu/ChanGroup/ECE695.html

Statistical Learning with Sparsity (Chapter 2)
https://web.stanford.edu/~hastie/StatLearnSparsity/

Elements of Statistical Learning (Chapter 3.4)
https://web.stanford.edu/~hastie/ElemStatLearn/

http://cs229.stanford.edu/section/cs229-linalg.pdf
https://arxiv.org/pdf/1509.09169.pdf
https://engineering.purdue.edu/ChanGroup/ECE695.html
https://web.stanford.edu/~hastie/StatLearnSparsity/
https://web.stanford.edu/~hastie/ElemStatLearn/



