Metaphotonics and metasurfaces with Mie resonances

Yuri Kivshar

Metamaterials: Electric and magnetic resonances

Mie-resonant metaphotonics

NATURE PHOTONICS | VOL 13 | SEPTEMBER 2019 | 585-587 | v

meeting report

VIEW FROM ... ICMAT2019

Into the 'Mie-tronic' era

Dielectric antennas and metasurfaces open up new opportunities for future applications in advanced optoelectronics, light detection and ranging for autonomous vehicles, fluorescence-enhancing substrates for bioimaging and many more.

See our review paper: Science 354, 2472 (2016)

ITMO UNIVERSITY

1908: Mie theory

Gustav Mie

- x << 1 : Rayleigh scattering
- x ~ 1 : Mie scattering
- x >>1 : Geometric scattering

$$\begin{split} \mathbf{E}_{r} &= E_{0}e^{-i\omega t}\sum_{n=1}^{\infty}i^{n}\frac{2n+1}{n(n+1)}(a_{n}^{r}\mathbf{m}_{01n}^{(3)}-ib_{n}^{r}\mathbf{n}_{e1n}^{(3)}),\\ \mathbf{H}_{r} &= -\frac{k_{2}}{\omega\mu_{2}}E_{0}e^{-i\omega t}\sum_{n=1}^{\infty}i^{n}\frac{2n+1}{n(n+1)}(b_{n}^{r}\mathbf{m}_{e1n}^{(3)}+ia_{n}^{r}\mathbf{n}_{01n}^{(3)}), \end{split}$$

$$a_{n}^{r} = -\frac{\mu_{1} j_{n} (N\rho) [\rho j_{n} (\rho)]' - \mu_{2} j_{n} (\rho) [N\rho j_{n} (N\rho)]'}{\mu_{1} j_{n} (N\rho) [\rho h_{n}^{(1)} (\rho)]' - \mu_{2} h_{n}^{(1)} (\rho) [N\rho j_{n} (N\rho)]'}$$

$$b_{n}^{r} = -\frac{\mu_{1} j_{n} (\rho) [N\rho j_{n} (N\rho)]' - \mu_{2} N^{2} j_{n} (N\rho) [\rho j_{n} (\rho)]'}{\mu_{1} h_{n}^{(1)} (\rho) [N\rho j_{n} (N\rho)]' - \mu_{2} N^{2} j_{n} (N\rho) [\rho h_{n}^{(1)} (\rho)]'}$$

Electromagnetic response of a sphere

Multipoles and interferences

Figure from K. Koshelev and Y. Kivshar, Dielectric resonant metaphotonics, ACS Photonics, Special issue "Photonics 2020", submitted (2020)

Bound state in the continuum (BIC)

Observation of bound states in the continuum

Observation of an electronic bound state above a potential well Nature, 1992

Federico Capasso, Carlo Sirtori, Jerome Faist, Deborah L. Sivco, Sung-Nee G. Chu & Alfred Y. Cho

AT&T Bell Laboratories, Murray Hill, New Jersey 07974, USA

Photonic crystal slabs

Hsu et al, Nature 2013

Kirill Koshelev, Andrey Bogdanov and Yuri Kivshar

Identified nearly a century ago by early workers in quantum mechanics, bound states can dramatically reduce radiation from optical resonators, opening up new application prospects in nanophotonics.

OPN, January 2020

Classification of BICs

Symmetry-protected (conventional)

in-plane inversion symmetry time reversal symmetry

Accidental (Friedrich-Wintgen)

in-plane inversion symmetry time reversal symmetry up-down symmetry

PHYSICAL REVIEW A	VOLUME 32, NUMBER 6	DECEMBER 1985
	Interfering resonances and bound states in the continuum	
Phy	H. Friedrich and D. Wintgen ysik Department, Technische Universität München, D-8046 Garching, West Germany	
	(Received 24 June 1985)	

BIC in a subwavelength resonator

Recent experimental demonstrations

RF experiment

M. Odit et al, submitted (2020)

Near-IR experiment

K. Koshelev et al, Science <u>367</u>, 288 (2020)

SHG from quasi-BIC states: Recent experiment

Examples of "Mie-tronics" effects

Nano Letters (2014)

Science (2020)

ACS Nano (2020) online

Nano Letters (2020) under review

Figure from K. Koshelev and Y. Kivshar, Dielectric resonant metaphotonics, ACS Photonics, Special issue "Photonics 2020", submitted (2020)

Dielectric metasurfaces

ITMO UNIVERSITY

Two strategies for metasurface engineering

Multipoles for highly efficient transmission


```
Milton Kerker
```

Resonances with bound states in the continuum

J. von Neumann E. Wigner

Tailoring magnetic response

1.15

1.1

400

450

500

Si disk diameter (nm)

550

600

I. Staude et al, ACS Nano 7, 7824 (2013)

0.1

1.15 1.1 400

450

Si disk diameter (nm)

500 550 600

0.1

Huygens' metasurfaces

Silicon nanodisks embedded in n = 1.66 medium

Manuel Decker, Isabelle Staude,* Matthias Falkner, Jason Dominguez, Dragomir N. Neshev, Igal Brener, Thomas Pertsch, and Yuri S. Kivshar

Mie + Fabry-Perot resonances

How to make a metasurface broadband ?

Broadband operation via multipolar response

Broadband highly-efficient dielectric metasurfaces

S. Kruk et al, APL Photonics 1, 030801 (2016)

Transmission efficiencies of metadevices

Year	Functionality	Effi	ciency										Ref
		0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
2012	lens, axicon	1%											Aieta 2012
2013	hologram	0.2%											Zhou 2013
2013	lens	10)%								1		Ni 2013
2013	hologram	2%										Φ	Huang 2013
2014	lens, axicon, beam defle	ctor				75%						at	Lin 2014
2015	lens				59%							0	Matsui 2015
2015	lens					82%						JSS	Arbabi 2015
2015	beam deflector			45%								00	Yu 2015
2015	vortex				7(0%						σ	Chong 2015
2015	vortex, beam deflecto	r		45%								Of	Shalaev 2015
2015	lens, hologram,Q-plate	e l				83%						$\sum_{i=1}^{i}$	Arbabi 2015
2015	lens, vortex			36%								S U S	Zhan 2015
2016	hologram					75%						are	Khorasaninejad 2016
2016	lens					86%	, 0					ğ	Khorasaninejad
2016	lens				65%)				A	NU	Ü	Arbabi2016
2016	waveplate, Q-plate					9()%					н Н	Kruk 2016
2016	holograms					9	1%						Wang 2016
2017	beam deflector				679	%					-1		zhou 2017
2017	lens				53%								Chen 2017
2017	beam deflector					75%							Sell 2017

Metasurfaces and optical communications

Nonlinear dielectric metasurfaces

Nonlinear Wavefront Control with All-Dielectric Metasurfaces

Lei Wang,[†] Sergey Kruk,^{*,⁺©} Kirill Koshelev,^{†,§} Ivan Kravchenko,[∥] Barry Luther-Davies,[‡] and Yuri Kivshar^{†,§©}

Two strategies for metasurface engineering

Multipoles for highly efficient transmission

Milton Kerker

Resonances with bound states in the continuum

J. von Neumann E. Wigner

Metasurfaces with a broken symmetry

V. A. Fedotov,^{1,*} M. Rose,¹ S. L. Prosvirnin,² N. Papasimakis,¹ and N. I. Zheludev^{1,†}

High-Q quasi-BIC metasurfaces

Metasurfaces and BIC resonances

Metasurfaces for surface-enhanced spectroscopies

otonics

Ultrasensitive hyperspectral biosensing based on high-Q dielectric metasurfaces

Filiz Yesilkoy¹, Eduardo Romero Arvelo^{1,2}, Yasaman Jahani¹, Mingkai Liu³, Andreas Tittl¹, Volkan Cevher², Yuri Kivshar³, and Hatice Altug^{1*}

Nonlinear metasurfaces

Nonlinear optics with resonant metasurfaces

Thomas Pertsch and Yuri Kivshar

The field of nonlinear optics is a well-established discipline that relies on macroscopic media and employs propagation distances longer than a wavelength of light. Recent progress with electromagnetic metamaterials has allowed for the expansion of this field into new directions of new phenomena and novel functionalities. In particular, nonlinear effects in thin, artificially structured materials such as metasurfaces do not rely on phase-matching conditions and symmetry-related selection rules of natural materials; they may be substantially enhanced by strong local and collective resonances of fields inside the metasurface nanostructures. Inside: Energy Quarterly

end beyond simple harmonic generation and earities. This article provides a brief review of

Metasurfaces for flat optics ALSO IN THIS ISSUE

March 2020

Metasurfaces: Subwavelength nanostructure arrays for ultrathin flat optics and photonics

Junsuk Rho, Guest Editor

Examples of nonlinear metadevices

BIC-enhanced nonlinear effects

BIC-resonant metasurfaces and 2D materials

Collaboration with Alex Solntsev, UTS

X 10⁵ enhancement of SHG

SW3N.6 CLEO May 2020

High-harmonic generation with BIC

High-Harmonic Generation in Dielectric Metasurfaces Empowered by Bound States in the Continuum

George Zograf^{1,2}, Anastasia Zalogina¹, Kirill Koshelev^{1,2}, Duk-Yong Choi³, Viacheslav Korolev⁴, Richard Hollinger⁴, Daniil Kartashov⁴, Michael Zürch⁵, Christian Spielmann⁴, Sergey Makarov², Barry Luther-Davies³, Sergey Kruk^{1,*} and Yuri Kivshar^{1,2}

FTh1C.5 CLEO May 2020

BICs in plasmonic metasurfaces

PHYSICAL REVIEW LETTERS 121, 253901 (2018)

Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems

Shaimaa I. Azzam,^{*} Vladimir M. Shalaev,[†] Alexandra Boltasseva,[‡] and Alexander V. Kildishev[§] School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA

Topological photonics

Topological photonics

NOVEMBER 2014 VOL 8 NO

www.nature.com/naturephotoni

Depelopments of topological photonics

Broken TR symmetry

Nature 461, 772-775 (2009). Nature Photon. 6, 782-787 (2012)

Nature 496, 196-200, (2013)

C

arXiv:1507.00337 (2015)

Nature Physics (2016)

0.4.

0.42 0.40

0.38

Preserved TR symmetry

Nature Phys. 7, 907-912 (2011). Nature Photon. 7, 1001-1005 (2013)

Nature Comm. 5, 5782, (2014)

arXiv:1401.1276 (2012) Nature Mater. 12, 233-239 (2013) Phys. Rev. Lett. 114, 223901 (2015)

© Alex Khanikaev (2016)

Our research strategies in topological photonics

Resonant dielectric meta-atoms

Nonlinear and active topological photonics

Nature Nanotechnology 14, 126 (2019)

Phys Rev Lett **123**, 103901 (2019)

Nonlinear optics meets topology

Enhancement of nonlinear interactions by the edge states

The zigzag model suggested in ACS Photonics <u>1</u>, 101 (2014)

Interplay between ED and MD resonances

nature nanotechnology LETTERS https://doi.org/10.1038/s41565-018-0324-7

3

Nonlinear light generation in topological nanostructures

Sergey Kruk¹, Alexander Poddubny^{1,2,3}, Daria Smirnova^{1,4}, Lei Wang¹, Alexey Slobozhanyuk², Alexander Shorokhov⁵, Ivan Kravchenko⁶, Barry Luther-Davies⁷ and Yuri Kivshar^{1,2*}

Nonlinear topological photonics

Phys Rev Lett 123, 103901 (2019)

Concluding remarks

- Metamaterials is still an active research field (but now often appears under a new brand name of meta-optics or metaphotonics), that promises many applications in photonics and subwavelength optics;
- Dielectric nanoparticles with high refractive index can be implemented for many metaphotonics phenomena governed by Mie resonances;
- Many novel effects originate from multipolar interferences and the magnetic field enhancement, and they drive novel functionalities of all-dielectric resonant metasurfaces and metadevices
- Recent many advances in meta-optics and nanophotonics are associated with the physics of bound states in the continuum which appear due to strong coupling of guided leaky modes combined with Mie resonances

Questions, comments, and collaboration proposals: Yuri Kivshar <yuri.kivshar@anu.edu.au>