Reflections on the Past, Present, and Future of Device Research

Mark Lundstrom

Electrical and Computer Engineering Purdue University West Lafayette, Indiana USA

Lundstrom: 2020

It began with the transistor

Bardeen, Brattain, Shockley, 1947

Lundstrom: 2020

Semiconductor Science

"Karl Lark-Horovitz is best known for turning the physics department of Purdue University, then a backwater school, into a research powerhouse."

http://www.pbs.org/transistor/album1/ addlbios/lark.html

1941: WWII: Semiconductor diode rectifiers http://www.computerhistory.org

Semiconductor Device Research: Stage 1

- 1947: Point contact transistor
- 1948: Thermoelectric generator
- **1948:** Bipolar junction transistor
- 1954: Modern solar cell
- 1956: PNPN diode
- 1959: Integrated circuits
- 1960: MOSFETs
- 1962: LED's and semiconductor lasers
- 1964: Gunn diode
- **1965:** IMPATT diode
- 1967: DRAM cell
- **1968:** Resonant gate transistor (MEMS)
- **1969**: CCD

The value of practical knowledge

"Upon my arrival I was assigned by Dr. M. J. Kelly to an **indoctrination program** in vacuum tubes."

Insofar as my contribution to transistor electronics has hastened the day of a fully electronic telephone exchange, it was strongly stimulated by the experiences given me during my early years at the Laboratories."

Shockley's 1956 Nobel Lecture nobelprize.org

The magic of Bell Labs

The great industrial research labs of yesterday

"...Mervin Kelly, the president of Bell Labs, let many members of his research department **roam free**, sometimes **without concrete goals**, for years on end."

"Bell Labs ... had **the advantage of necessity**. In Kelly's view, the members of the technical staff had the great advantage of working to improve a telephone system where there were always problems, always needs."

The science of semiconductor devices

Advice from Shockley

"Frequently, I have been asked if an experiment I have planned is **pure or applied research**; to me it is more important to know if the experiment will yield new and probably **enduring knowledge** about nature."

Shockley's 1956 Nobel Lecture nobelprize.org

Device Research: Stage 2

- 1970: ISFET
- 1976: Modern quantum well laser
- 1977: IGBT
- 1977: LDMOS
- 1979: HEMT
- 1980: Flash memory
- 1982: Modern HBTs
- 1987: OLED
- 1992: CMOS imagers
- 1994: Quantum cascade laser
- 1998: Modern FinFETs
- 2008: STT-MRAM
- 2013: Quantum dot displays

The golden age of device research

"The principal applications of any sufficiently new and innovative technology always have been – and will continue to be – applications *created* by that technology."

"...a **search for applications** should be considered a part of the research."

nobelprize.org

Outline

The past The present The future

The modern solar cell

Chapin, Pearson, and Fuller, Bell Labs, 1954

http://www.bell-labs.com/org/physicalsciences/timeline/span10.html#

Lundstrom: 2020

High-efficiency Si Solar Cells

M.A. Green, "The Passivated Emitter and Rear Cell: From Conception to Mass Production," *Solar Energy Materials and Solar Cells*, **143**, 190-197, 2015. 13

PV learning curve

Nancy M. Haegel, et al., "Terawatt-scale photovoltaics, Science, **356**, 141-1143, 2017.

Device research today

"Electronic Energy Transfer in CdSe Quantum Dot Solids"

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi *Phys. Rev. Lett.*, **76**, 1517, 1996.

Cherie R. Kagan Univ. Pennsylvania

https://en.wikipedia.org/wiki/Cherie_Kagan

IoT4Ag Engineering Research Center

IoT4Ag researchers will work on: sensing, communication, energy and response. Tiny, plantable sensors will send data to robots and other farm equipment, all of which also will talk to the cloud. All of this data be integrated with that from the wider internet and fed back to farmers so they can make better decisions.

Outline

The past The present The future

"Personal Computer without ICs"

"... how a home computer could look like in the year 2004... with teletype interface and Fortran language, the computer will be easy to use." Popular Mechanics, 1954

Device research in the 21st Century

Predicting the Great Achievements of the 21st Century

Robert W. Lucky

IEEE Spectrum, Dec. 2014

- Things that were happening
- Things that could be anticipated
- Things that no one can could have predicted.

The future

What's different now, is that we have in place an incredibly sophisticated and pervasive infrastructure.

Is there a new device that will invent its own applications?

21st Century Electronics

R. W. Lucky, IEEE Spectrum, May 1998

The future

How do we prepare students and working engineers to succeed in 21st Century physical electronics?

The challenge in 1960

"... education is perhaps the most significant factor affecting the future of electronics."

en.wikipedia.org/wiki/Frederick_Terman

Frederick Emmons Terman, "Education – A basic component of the new electronics," presented at the 16th National Electronics Conference, Chicago, IL, Oct. 12, 1960.

Semiconductor Electronics Education Committee

SEEC Notes

"SEEC was a triumph of engineering science, with a substantial, lasting impact. The basic ideas influenced many textbooks written in subsequent years. The approaches are still used in EE education throughout the world..."

R.B. Adler, et al., 1960-1967

http://web.mit.edu/klund/www/books/seec.html http://www-mtl.mit.edu/~penfield/pubs/eb-03.html

Carver Mead's question

http://www.carvermead.caltech.edu

"How do we, as a human culture, prepare ourselves and our children for this world in which the knowledge base turns over several times within a single human lifetime?"

Carver Mead, Collective Electrodynamics, MIT Press, 1999.

"One answer is specialization"

http://www.carvermead.caltech.edu

"If that were to be our only response, I would view our prospects as a culture with deep concern, even with alarm."

Carver Mead, Collective Electrodynamics, MIT Press, 1999.

Carver Mead's answer

http://www.carvermead.caltech.edu

"It is the **unification and simplification of knowledge** that gives us hope."

Carver Mead, Collective Electrodynamics, MIT Press, 1999.

Simplifying without watering down

"Trying to explain things rigorously, but simply often requires **new organizing principles** and approaches."

Paul Penfield, MIT

class notes on "Information and Entropy"

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-050jinformation-and-entropy-spring-2008/syllabus/MIT6_050JS08_penfield.pdf

Outline

The past The present The future

- Essential Physics of Transistors
- Transport Theory for the 21st Century

Essential physics of transistors

Transport theory: Our common knowledge

Theory of the Flow of Electrons and Holes in Germanium and Other Semiconductors

By W. VAN ROOSBROECK

(Manuscript Received Mar. 30, 1950)

Abstract – A theoretical analysis of the flow of added current carriers in homogeneous semiconductors is given...

The Bell System Technical Journal, 29 (4), pp. 560-607,1950.

We are interested in what causes charge (and heat) to flow, i.e. what produces electrical (and heat) currents?

The general concepts can be illustrated with a hydrodynamic analogy, i.e. what causes water to flow?

Connection to the outside

 h_2

Electron transport

In learning chemistry, we begin with the simplest atom – the hydrogen atom and then to proceed to more complex atoms, molecules, compounds, etc.

We will take a similar approach - begin by understanding the current in a small, nanodevice, and then extend that understanding to large, bulk semiconductors.

Current in a nano device

How does the current that flows depend on the voltages on the two contacts?

Current equation

The integral over energy is analogous to connecting pipes at different heights.

What is transmission?

 $\mathcal{T}(E) = \frac{\lambda(E)}{\lambda(E) + L}$ 1) Diffusive: $L >> \lambda$ $\mathcal{T} = \frac{\lambda}{L} << 1$ 2) Ballistic: $L << \lambda$ $\mathcal{T} = 1$

 λ is the "mean-free-path for backscattering"

What is a channel?

(channels are also called "modes")

Channels are like lanes on a highway

"Fermi window"

Lundstrom: 2020

What causes a current?

$$I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 - f_2) dE$$

Differences in the Fermi level (Fermi function) cause electrical currents.

Fermi window under small bias

$$I = \frac{2q}{h} \int \mathcal{T}(E) M(E) \Big(f_1(E) - f_2(E) \Big) dE$$

$$f_1(E) = \frac{1}{1 + e^{(E - E_{F1})/k_B T}} \approx f_0(E)$$

$$\frac{f_2(E) - f_1(E)}{\delta E_F} \approx \frac{\partial f_0}{\partial E_F} = -\frac{\partial f_0}{\partial E}$$

$$f_2(E) = \frac{1}{1 + e^{(E - E_{F2})/k_B T}} \approx f_0(E) \qquad f_1(E) - f_2(E) \approx -\left(-\frac{\partial f_0}{\partial E}\right) \delta E_F$$

 $E_{F2} = E_{F1} + \delta E_F$

Lundstrom: 2020

Fermi window: small bias

$$f_{1}(E) - f_{2}(E) \approx -\left(-\frac{\partial f_{0}}{\partial E}\right) \delta E_{F}$$

$$\delta E_{F} = -qV$$

$$f_{1}(E) - f_{2}(E) = \left(-\frac{\partial f_{0}}{\partial E}\right) (qV)$$

$$f_{1}(E) - f_{2}(E) = \left(-\frac{\partial f_{0}}{\partial E}\right) (qV)$$

$$T > 0 \text{ K}$$

"Fermi window"

$$f_{0}(E) \qquad \approx 5k_{B}T \qquad -\partial f_{0}/\partial E$$

Current for a small voltage difference

Small bias conductance

$$I = GV \quad A$$
$$G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E}\right) dE \quad S$$

Case 1: Quantized conductance

$$G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E}\right) dE$$

$$T \to 0 \operatorname{K}$$
 $\left(-\frac{\partial f_0}{\partial E}\right) \to \delta(E_F)$ $\mathcal{T}(E) \to 1$

$$G_B(0 \mathrm{K}) = \frac{2q^2}{h} M(E_F) = \frac{1}{12.9 \mathrm{k}\Omega} M(E_F)$$

Case 1: Quantized conductance

D. Holcomb, *American J. Physics*, **67**, pp. 278-297 1999. Data from: B. J. van Wees, et al., *Phys. Rev. Lett.* **60**, 848851, 1988.

Lundstrom: 2020

Case 2: Transport in a bulk semiconductor

We seek an equation for the current density in the +x direction.

In 3D:
$$J_x = -I/A$$

X

Current equation in the bulk

$$G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E} \right) dE \qquad \mathcal{T}(E) = \frac{\lambda(E)}{\lambda(E) + L} \to \frac{\lambda(E)}{L}$$

"diffusive"

$$J_{x} = -I/A = \left\{ \frac{2q^{2}}{h} \int \frac{\lambda(E)}{L} \frac{M(E)}{A} \left(-\frac{\partial f_{0}}{\partial E} \right) dE \right\} V \qquad \frac{qV}{L} = -\frac{dF_{n}}{dx}$$
$$J_{x} = \sigma_{n} \frac{d(F_{n}/q)}{dx} \qquad \sigma_{n} = \frac{2q^{2}}{h} \int \lambda(E) \left(M(E)/A \right) \left(-\frac{\partial f_{0}}{\partial E} \right) dE$$

 σ_n : Conductivity (S/m)

Lundstrom: 2020

Mobility of graphene?

Mobility in graphene?

$$\sigma_n = \frac{2q^2}{h} \int \lambda(E) (M(E)/A) \left(-\frac{\partial f_0}{\partial E}\right) dE$$

 $\sigma_n \equiv nq\mu_n$

Current in the bulk

$$J_{nx} = \sigma_n \frac{d(F_n/q)}{dx}$$
$$J_{px} = \sigma_p \frac{d(F_p/q)}{dx}$$

(Large (bulk) semiconductor under small bias.)

Gradients in the quasi-Fermi level cause current to flow.

Lundstrom: 2020

Current equation for bulk semiconductors

$$J_{x} = n\mu_{n} \frac{dF_{n}}{dx}$$

$$n = N_{C}e^{(F_{n} - E_{C})/k_{B}T}$$

$$F_{n} = E_{C} + k_{B}T \ln\left(\frac{n}{N_{C}}\right)$$

$$\frac{dE_{C}}{dx} = -q \frac{dV}{dx} = q\mathcal{E}$$

$$\frac{dF_{n}}{dx} = \frac{dE_{C}}{dx} + k_{B}T \frac{1}{n} \frac{dn}{dx}$$

$$J_{x} = n\mu_{n} \frac{dE_{C}}{dx} + k_{B}T \mu_{n} \frac{dn}{dx}$$

$$(1)$$

$$J_{x} = nq\mu_{n}\mathcal{E} + qD_{n} \frac{dn}{dx}$$

J

Transport from the nanoscale to the macroscale

$$I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 - f_2) dE$$

linear transport
$$G = \frac{2q^2}{h} M \qquad G = \frac{2q^2}{h} \int_{E_C} \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E}\right) dE \qquad J_n = \sigma_n \frac{d(F_n/q)}{dx}$$

ballistic M countable ballistic to diffusive M small or large

diffusive, M large $\int J_n = n\mu_n \mathcal{E} + qD_n \frac{dn}{dx}$

For more...

SEEC for the 21st Century

SEEC Notes

"SEEC was a triumph of engineering science, with a substantial, lasting impact. The basic ideas influenced many textbooks written in subsequent years. The approaches are still used in EE education throughout the world..."

R.B. Adler, et al., 1960-1967

http://web.mit.edu/klund/www/books/seec.html http://www-mtl.mit.edu/~penfield/pubs/eb-03.html

Summary

Semiconductor devices have enabled the powerful electronic systems that we have today.

21st Century device research is system-driven.

To support another 50+ years of innovation in semiconductor electronics, we should re-think how we educate semiconductor technologists.

21st Century Electronics

R. W. Lucky, IEEE Spectrum, May 1998