Data science for Materials Science & Engineering Supervised Learning: Neural Networks

In this module

Introduction to neural networks for materials science
Hands on tutorial using nanoHUB: neural networks for XX (this file)
Hands on tutorial using nanoHUB: neural networks for XX
Homework assignments

Saaketh Desai and Alejandro Strachan <u>desai61@purdue.edu || strachan@purdue.edu</u> School of Materials Engineering & Network for Computational Nanotechnology Purdue University West Lafayette, Indiana USA **PUR**

NANOHUB

After completing this lecture you will:

- Be able to create and train a neural network
- Be able to define objective functions for regression and classification tasks
- Know how to determine overfitting and underfitting in training neural networks

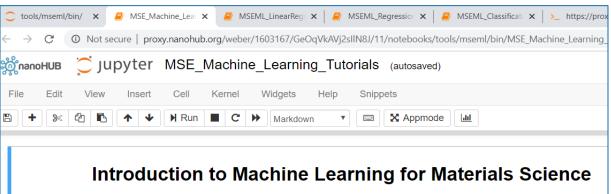
Pre-requisites:

- Basic Python programming
- Querying materials repositories
- Linear regression

Launching a Jupyter tool in nanoHUB

Machine Learning for Materials Science: Part 1

From your browser go to link: <u>https://nanohub.org/tools/mseml/</u>


Machine Learning for Materials Science: Part 1		Collect
y Juan Carlos Verduzco Gastelum ¹ , Alejandro Strachan ¹ , Saaketh Desai ¹ . <i>Purdue University</i> Machine learning and data science tools applied to materials science	Launch Tool Version 1.1 - published on 25 Feb 2019 doi:10.21981/9QJN-7N65 cite this Open source: license download	 1087 users, detailed usage 0 Citation(s) 0 questions (Ask a question) 1 review(s) 0 wish(es) (New Wish)
	View All Supporting Dog ments	→ Share: 👔 💟 🖼

Click on Launch Tool to begin

Step 1: Landing Page – Notebook: Neural Network Regression

Navigate to the third link in the landing page to access the notebook

The tutorials here will give you an insight into the usage of Machine Learning to approach problems related to ma

- Get started Click on the links below to begin each tutorial.
- Important To exit individual tutorials and return to this page, use File -> Close and Halt. "Terminate Session"

Querying databases, Organizing and Plotting Data:

- Query Pymatgen and Mendeleev for properties like Young's modulus and melting temperature
- Organize data into Pandas dataframes and python dictionaries and plot using Plotly

Linear Regression to predict material properties:

- Perform linear regression using the scikit learn package and predict Young's modulus
- Visualize trends in data and 'goodness of fit' of linear model

Neural Network Regression to predict material properties:

- Use neural networks to perform non-linear, higher order regression
- Visualize trends and compare non-linear model to linear regression

Neural Network Classification to predict crystal structures:

Use neural networks to classify elements according to their crystal structures

Step 2: Let's get some data

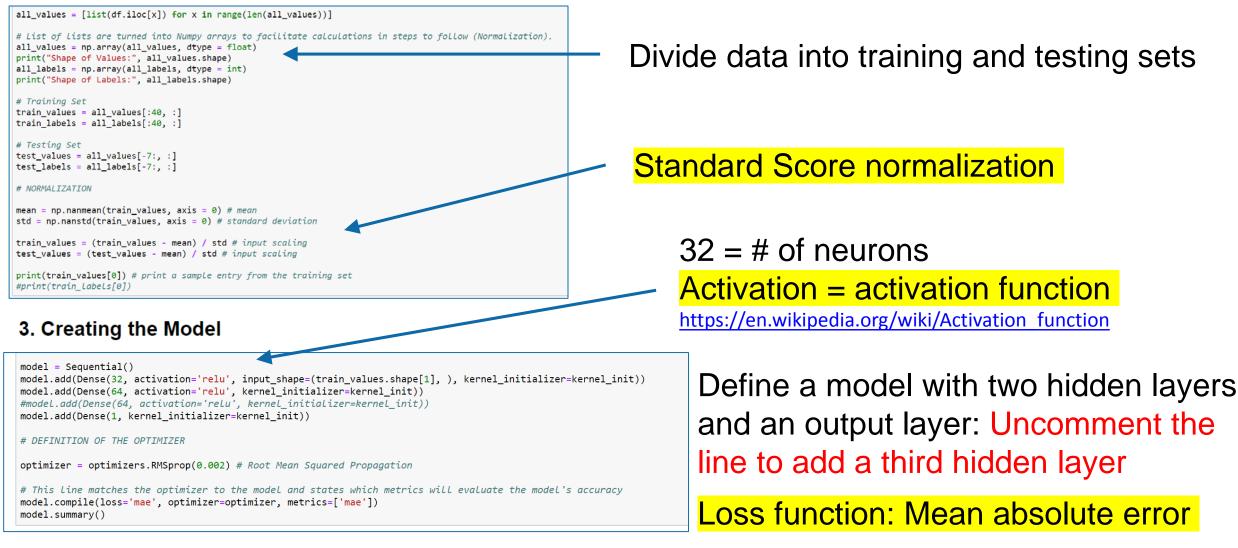
1. Getting a dataset

NANOHUE

3 75 8.85 5900.0 0.243516 704.0 774.0 4 28 6.60 3005.0 0.147207 378.6 430.1 5 67 18.70 2968.0 0.207795 301.0 300.6 6 79 10.20 3080.0 0.261370 340.0 368.2								
<pre>simport pandsa sa pd import mandom import mandom import insorflow import kerss from kersa. Inport installizers from kersa. Inport information inport information information. Interval in the inport information informat</pre>								
<pre>signort numpy as np import tensorflow as tf from kersa: import sequential import method inite import method inite</pre>			del					
<pre>import tensorflow as tf from tensorflow as pt import sys ffc_elements = [7&", "A1", "Au", "Cu", "In", "Mi", "Pb", "Pd", "Pt", "Rh", "Th", "Vb"] ffc_elements = [7&", "Ca", "Cr", "Eu", "fe", "II", "Mn", "Mo", "Na", "Nb", "Rb", "Ta", "V", "N"] https:lements = [7e", 'Ca", "Co", "D", "E", "Gd", "Pt", "Rh", "Nb", "Rb", "Ta", "V", "N"] https:lements = [7e", 'Ca", "Co", "D", "Ti", "TI", "Tm", "V", "Zn", "Zn"] elements = ffc_elements + bcc_elements + hcp_elements random.Random(1).shuffle(elements) querable_mendeleev = ["atomic_mumber", "atomic_volume", "boiling_point", "en_ghosh", "evaporation_heat", "heat_of_formation", "Iattice_constant", "melting_point", "specific_heat"] querable_walues = querable_mendeleev = querable_pymatgen atomic_number atomic_volume bolling_point en_ghosh evaporation_heat heat_of_formation lattice o 27 6.70 3143.0 0.143236 389.1 426.7 1 l 69 18.10 2220.0 0.216724 232.0 232.2 2 2 39 19.80 3611.0 0.121699 367.0 424.7 3 3 75 8.85 5900.0 0.243516 704.0 774.0 424.7 3 3 75 8.85 5900.0 0.243516 704.0 774.0 424.7 378.6 430.1 1 5 67 18.70 2968.0 0.207795 301.0 300.6 1 6 79 10.20 3080.0 0.261370 340.0 368.2 7 7 21 15.00 3104.0 0.119383 332.7 377.8 8 8 45 8.30 4000.0 0.140238 494.0 556.0 1</pre>	impo	ort numpy as np						
<pre>from tensorFlow import kerss from kerss import initializers from kersa.layers import initializers fred_elements = [126, 127, "Co", "Co", "Co", "Eu", "Hi", "Pb", "Ne", "N</pre>								
from kersa import initializers from kersa import initializers from kersa import initializers from kersa import sequential import matplotlib.pyplot as plt import sys frc_elements = ["as, "Ca", "Co", "Cc", "Ev", "Fe", "Li", "M", "Mo", "Na", "Nb", "Ta", "V", "N"] bcc_elements = ["as, "Ca", "Co", "Cc", "Ev", "Fe", "Li", "M", "Mo", "Na", "Nb", "Ta", "V", "N"] fcc_elements = ["as, "Ca", "Co", "Ca", "Ev", "Fe", "Li", "M", "Mo", "Na", "Nb", "Ta", "V", "N"] elements = ["as, "Ca", "Co", "Ca", "Ev", "Fe", "Li", "M", "Mo", "Na", "Nb", "Ta", "V", "N"] elements = ["asonic_number", "atomic_volume', "boiling_point", "specific_heat"] querable_mendeleev = ["atomic_muber", "atomic_volume', "boiling_point", "specific_heat"] querable_pymatgen = ["atomic_muber", "atomic_volume', "boiling_point", "coefficient_of_linear_themal_expansion"] querable_values = querable_mendeleev + querable_pymatgen atomic_number atomic_volume boiling_point engfosh evaporation_heat heat_of_formation lattice querable_values = querable_mendeleev + querable_pymatgen 1 6.0 0.143236 389.1 426.7 1 6.9 18.10 2220.0 0.216724 232.0 232.2 2 39 19.80 3611.0 0.121699 367.0 424.7								
from kers.models import sequential import matplotlib.pyplot as plt import sys from kers.models import matplotlib.pyplot as plt import sys fcc_llements = ["ae", "Al", "Au", "Cu", "In", "Ni", "Pb", "Pd", "Pt", "Rh", "Th", "Yb"] bcc_llements = ["ae", "Cd", "Co", "Co", "Eu", "Fe", "Li", "mn", "Mo", "Na", "Nb", "Re", "Ta", "V", "W"] bcc_llements = ["ae", "Cd", "Co", "Co", "Eu", "Fe", "Li", "mn", "Mo", "Na", "Nb", "Re", "Ta", "V", "W"] bcc_llements = ["ae", "Cd", "Co", "Co", "Eu", "Fe", "Li", "mn", "Mo", "Na", "Nb", "Re", "Ta", "V", "W"] elements = fcc_elements + bcc_elements + hcp_elements random.Random(1).shuffle(elements) querable_pomatgen = ["atomic_number", "atomic_volume", "boiling_point", "enghosh", "evaporation_heat", "heat_of_formation", "attrice_constant", "melting_point", "specific_heat"] querable_pomatgen = ["atomic_number", "atomic_volume", "boiling_point", "cofficient_of_linear_thermal_expansion"] lattice querable_values = querable_mendeleev + querable_pomatgen en_ghosh evaporation_heat heat_of_formation lattice 1 69 18.10 2220.0 0.216724 232.0 232.2 232 2 39 19.80 3611.0 0.121699 367.0 424.7 366 3 75 8.85 5900.0 0.243516 704.0 774.0 378.6 430.1 56 301.0								
<pre>Matplotlib inline import msplotlib.pyplot as plt import sys fcc_elements = ["Ag", "Al", "Au", "Cu", "Ir", "Mi", "Pb", "Pd", "Pt", "Rb", "Th", "Vb"] bcc_elements = ["ag", "Cd", "Cd", "Cd", "Ed", "Fe", "Li", "Mo", "Nb", "Nb", "Rb", "Th", "V", "N"] bcc_elements = ["ag", "Cd", "Cd", "Cd", "Ed", "Fe", "Cd", "He", "Nb", "Nb", "Rb", "Th", "V", "N"] bcc_elements = fcc_elements + bcc_elements + hcp_elements random.Random(1).shuffle(elements) querable_mendeleev = ["atomic_number", "atomic_volume", "boiling_point", "en_gBosh", "evaporation_heat", "heat_of_formation", "lattice_constant", "melting_point", "specific_heat"] querable_pymatgen = ["atomic_mumber", "atomic_volume", "boiling_point", "en_gBosh", "evaporation_heat", "heat_of_formation", "uerable_pymatgen = ["atomic_mumber", "atomic_volume", "boiling_point", "en_gBosh", "evaporation_heat", "heat_of_formation " automic_number atomic_volume boiling_point en_gBosh evaporation_heat heat_of_formation lattice 0 27 6.70 3143.0 0.143236 389.1 426.7 1 69 18.10 2220.0 0.216724 232.0 232.2 2 39 19.80 3611.0 0.121699 367.0 424.7 3 75 8.85 5900.0 0.243516 704.0 774.0 4 28 6.60 3005.0 0.147207 378.6 430.1 5 67 18.70 2968.0 0.207795 301.0 300.6 6 79 10.20 3080.0 0.261370 340.0 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0</pre>	fron	m keras.layers impor	t Dense					
<pre>import matpletlib.pyplot as plt import sys fcc_elements = ["Ag", "Al", "Au", "Cu", "Ir", "Ma", "Pb", "Pd", "Pt", "Rh", "Th", "Yb"] occ_elements = ["Ag", "Ca", "Co", "Co", "Tu", "Te", "Wa", "Mo", "Mo", "No", "No", "Rb", "Ta", "V", "N"] ntcp_elements = ["Se", "Cd, "Co", "Co", "Tu", "Tr", "Tr", "Yu", "Au", "No", "No", "No", "Rb", "Ta", "V", "N"] ntcp_elements = fcc_elements + bcc_elements random.Random(1).shuffle(elements) querable_pomatgen = ["atomic_number", "atomic_volume", "boiling_point", "enghosh", "evaporation_heat", "heat_of_formation",</pre>			t Sequential					
<pre>trouge the set of the set of</pre>			t as plt					
bcc_elements = ["@a", "Ca", "Co", "Cs", "Eu", "Fe", "Li", "Mo", "Mo", "Mo", "Mo", "Mo", "Rb", "Ta", "V", "N"] hcp_elements = [rea", "Ca", "Co", "Co", "Co", "Ga", "He", "Ho", "Li", "Mo", "Re", "Re", "Re", "Re", "Sc", "Tb", "Ti", "Ti", "Ti", "Ti", "Y", "Zn", "Zn", "Ke", "Re", "Re", "Ru", "Sc", "Tb", "Ti", "Ti", "Ti", "Ti", "Y", "Zn", "Zn", "Re", "Re", "Re", "Re", "Ittice_constant", "melting_point", "specific_neat"] querable_mendeleev = ["atomic_number", "atomic_volume", "boiling_point", "en_ghosh", "evaporation_heat", "heat_of_formation", "Ittice_constant", "melting_point", "specific_neat"] querable_pymatgen = ["atomic_adius", "density_of_solid", "coefficient_of_linear_thermal_expansion"] querable_values = querable_mendeleev + querable_pymatgen atomic_number atomic_volume boiling_point en_ghosh evaporation_heat heat_of_formation lattice 0 27 6.70 3143.0 0.143236 389.1 426.7 1 69 18.10 2220.0 0.216724 232.0 232.2 2 39 19.80 3611.0 0.121699 367.0 424.7 3 75 8.85 5900.0 0.243516 704.0 774.0 4 28 6.60 3005.0 0.147207 378.6 430.1 5 67 18.70 2968.0 0.207795 301.0 300.6 6 79 10.20 3080.0 0.261370 340.0 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0	impo	ort sys						
random.Random(1).shuffle(elements) querable_mendeleev = ["atomic_number", "atomic_volume", "boiling_point", "en_ghosh", "evaporation_heat", "heat_of_formation", "lattice_constant", "melting_point", "specific_heat"] querable_pymatgen = ["atomic_mass", "atomic_radius", "electrical_resistivity", "molar_volume", "bulk_modulus", "youngs_modulus", "average_ionic_radius", "electrical_resistivity", "molar_volume", "bulk_modulus", "youngs_modulus", "average_ionic_radius", "electrical_resistivity", "molar_volume", "bulk_modulus", "youngs_modulus", "average_ionic_radius", "density_of_solid", "coefficient_of_linear_thermal_expansion"] querable_values = querable_mendeleev + querable_pymatgen atomic_number atomic_volume boiling_point en_ghosh evaporation_heat heat_of_formation lattice 0 27 6.70 3143.0 0.143236 389.1 426.7 1 69 18.10 2220.0 0.216724 232.0 232.2 2 39 19.80 3611.0 0.121699 367.0 424.7 3 75 8.85 5900.0 0.243516 704.0 774.0 4 28 6.60 3005.0 0.147207 378.6 430.1 5 67 18.70 2968.0 0.207795 301.0 300.6 6 79 10.20 3080.0 0.261370 340.0 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0	bcc	_elements = ["Ba", " _elements = ["Be", "	Ca", "Cr", "Cs", "Eu' Cd", "Co", "Dy", "Er'	", "Fe", "Li", "Mn ", "Gd", "Hf", "Ho	", "Mo", "Na", ", "Lu", "Mg",	"Nb", "Rb", "Ta", "V",	, "W"]	
querable_mendeleev = ["stomic_number", "atomic_volume", "boiling_point", "enghosh", "evaporation_heat", "heat_of_formation", "lattice_constant", "melting_point", "specific_heat"] querable_modeleev", "boiling_modulus", "specific_heat"] querable_modules", "boiling_modulus", "specific_heat"] querable_pymatgen = ["atomic_mass", "atomic_radius", "electrical_resistivity", "molar_volume", "bulk_modulus", "georgamodulus", "density.of_solid", "coefficient_of_linear_thermal_expansion"] heat_of_formation lattice querable_values = querable_mendeleev + querable_pymatgen en_ghosh evaporation_heat heat_of_formation lattice 0 27 6.70 3143.0 0.143236 389.1 426.7 1 69 18.10 2220.0 0.216724 232.0 232.2 2 39 19.80 3611.0 0.121699 367.0 424.7 3 75 8.85 5900.0 0.243516 704.0 774.0 4 28 6.60 3005.0 0.147207 378.6 430.1 5 67 18.70 2968.0 0.207795 301.0 300.6 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 377.8 <		_		o_elements				
atomic_number atomic_volume boiling_point "specific_heat"] atomic_number atomic_volume boiling_point en_ghosh evaporation_heat heat_of_formation lattice querable_values = querable_mendeleev + querable_pymatgen en_ghosh evaporation_heat heat_of_formation lattice querable_values = querable_mendeleev + querable_pymatgen en_ghosh evaporation_heat heat_of_formation lattice querable_values = querable_mendeleev + querable_pymatgen en_ghosh evaporation_heat heat_of_formation lattice querable_values = querable_mendeleev + querable_pymatgen en_ghosh evaporation_heat heat_of_formation lattice querable_values = querable_mendeleev + querable_pymatgen en_ghosh evaporation_heat heat_of_formation lattice querable_values = querable_mendeleev + querable_pymatgen en_ghosh evaporation_file deat_of_formation lattice querable_values = querable_mendeleev + querable_pymatgen old 0.143236 389.1 426.7 deat_of_formation lattice querable_values = querable_mendeleev + querable_pymatgen old 0.121699 367.0 0.224.7 301.0 300.6 301.0 <th>rand</th> <th>dom.Random(1).shuffl</th> <th>e(elements)</th> <th></th> <th></th> <th></th> <th></th> <th></th>	rand	dom.Random(1).shuffl	e(elements)					
0 27 6.70 3143.0 0.143236 389.1 426.7 1 69 18.10 2220.0 0.216724 232.0 232.2 2 39 19.80 3611.0 0.121699 367.0 424.7 3 75 8.85 5900.0 0.243516 704.0 774.0 4 28 6.60 3005.0 0.147207 378.6 430.1 5 67 18.70 2968.0 0.207795 301.0 300.6 6 79 10.20 3080.0 0.261370 340.0 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0		"1 rable_pymatgen = ["a	attice_constant", "me tomic_mass", "atomic_	radius", "electri	cal_resistivit			lulus",
1 69 18.10 2220.0 0.216724 232.0 232.2 2 39 19.80 3611.0 0.121699 367.0 424.7 3 75 8.85 5900.0 0.243516 704.0 774.0 4 28 6.60 3005.0 0.147207 378.6 430.1 5 67 18.70 2968.0 0.207795 301.0 300.6 6 79 10.20 3080.0 0.261370 340.0 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0	quer	"1 rable_pymatgen = ["a "a rable_values = quera	attice_constant", "me tomic_mass", "atomic verage_ionic_radius", ble_mendeleev + quera	_radius", "electri , "density_of_soli able_pymatgen	cal_resistivit d", "coefficie	nt_of_linear_thermal_e	xpansion"]	
2 39 19.80 3611.0 0.121699 367.0 424.7 3 75 8.85 5900.0 0.243516 704.0 774.0 4 28 6.60 3005.0 0.147207 378.6 430.1 5 67 18.70 2968.0 0.207795 301.0 300.6 6 79 10.20 3080.0 0.261370 340.0 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0	quer	rable_pymatgen = ["a "a rable_values = quera atomic_number	attice_constant", "m tomic_mass", "atomic_ verage_ionic_radius", ble_mendeleev + quera atomic_volume	_radius", "electri , "density_of_soli able_pymatgen boiling_point	cal_resistivit d", "coefficie en_ghosh	evaporation_heat	xpansion"]	
3 75 8.85 5900.0 0.243516 704.0 774.0 4 28 6.60 3005.0 0.147207 378.6 430.1 5 67 18.70 2968.0 0.207795 301.0 300.6 6 79 10.20 3080.0 0.261370 340.0 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0	quer quer 0	rable_pymatgen = ["a "a rable_values = quera atomic_number	attice_constant", "m tomic_mass", "atomic_ verage_ionic_radius", ble_mendeleev + quera atomic_volume	_radius", "electri , "density_of_soli able_pymatgen boiling_point 3143.0	cal_resistivit d", "coefficie en_ghosh 0.143236	evaporation_heat	heat_of_formation 426.7	
4 28 6.60 3005.0 0.147207 378.6 430.1 5 67 18.70 2968.0 0.207795 301.0 300.6 6 79 10.20 3080.0 0.261370 340.0 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0	quer quer 0	rable_pymatgen = ["a "a rable_values = quera atomic_number 27	attice_constant", "me tomic_mass", "atomic_ verage_ionic_radius", ble_mendeleev + quera atomic_volume 6.70	_radius", "electri , "density_of_soli able_pymatgen boiling_point 3143.0	cal_resistivit d", "coefficie en_ghosh 0.143236	evaporation_heat	heat_of_formation 426.7	
5 67 18.70 2968.0 0.207795 301.0 300.6 6 79 10.20 3080.0 0.261370 340.0 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0	quer quer 0	rable_pymatgen = ["a "a rable_values = quera atomic_number 27 69	attice_constant", "m tomic_mass", "atomic_ verage_ionic_radius", ble_mendeleev + quera atomic_volume 6.70 18.10	_radius", "electri , "density_of_soli able_pymatgen boiling_point 3143.0 2220.0	cal_resistivit d", "coefficie en_ghosh 0.143236 0.216724	evaporation_heat 389.1 232.0	heat_of_formation 426.7 232.2	
6 79 10.20 3080.0 0.261370 340.0 368.2 7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0	quer quer 0 1 2	rable_pymatgen = ["a rable_values = quera atomic_number 27 69 39	attic=_constant", "met tomic_mass", "atomic_ verage_ionic_radius", ble_mendeleev + quera atomic_volume 6.70 18.10 19.80	radius", "electri , "density_of_soli able_pymatgen boiling_point 3143.0 2220.0 3611.0	cal_resistivit d", "coefficie en_ghosh 0.143236 0.216724 0.121699	evaporation_heat 389.1 232.0 367.0	kpansion"] heat_of_formation 426.7 232.2 424.7	
7 21 15.00 3104.0 0.119383 332.7 377.8 8 45 8.30 4000.0 0.140838 494.0 556.0	quer quer 0 1 2 3	rable_pymatgen = ["a "a rable_values = quera atomic_number 27 69 39 75	attice_constant", "m tomic_mass", "atomic_ verage_ionic_radius", ble_mendeleev + quera atomic_volume 6.70 18.10 19.80 8.85	radius", "electri , "density_of_soli able_pymatgen boiling_point 3143.0 2220.0 3611.0 5900.0	cal_resistivit d", "coefficie en_ghosh 0.143236 0.216724 0.121699 0.243516	evaporation_heat 389.1 232.0 367.0 704.0	kpansion"] heat_of_formation 426.7 232.2 424.7 774.0	
8 45 8.30 4000.0 0.140838 494.0 556.0	quer quer 0 1 2 3 4	rable_pymatgen = ["a rable_values = quera atomic_number 27 69 39 75 28	attic=_constant", "mu tomicmass", "atomic_ verage_ionic_radius", ble_mendeleev + quera atomic_volume 6.70 18.10 19.80 8.85 6.60	radius", "electri , "density_of_soli able_pymatgen boiling_point 3143.0 2220.0 3611.0 5900.0 3005.0	cal_resistivit d", "coefficie 0.143236 0.216724 0.121699 0.243516 0.147207	evaporation_heat 389.1 232.0 367.0 704.0 378.6	kpansion"] heat_of_formation 426.7 232.2 424.7 774.0 430.1	
	quer quer 0 1 2 3 4 5	rable_pymatgen = ["a rable_values = quera atomic_number 27 69 39 75 28 67	attice_constant", "me tomic_mass", "atomic_ verage_ionic_radius", ble_mendeleev + quera atomic_volume 6.70 18.10 19.80 8.85 6.60 18.70	radius", "electri , "density_of_soli able_pymatgen boiling_point 3143.0 2220.0 3611.0 5900.0 3005.0 2968.0	cal_resistivit d", "coefficie en_ghosh 0.143236 0.216724 0.121699 0.243516 0.147207 0.207795	evaporation_heat 389.1 232.0 367.0 704.0 378.6 301.0	kpansion"] kpansion heat_of_formation 426.7 232.2 424.7 774.0 430.1 300.6 300.6	
9 74 9.53 5930.0 0.239050 824.0 851.0	quer quer 0 1 2 3 4 5 6	rable_pymatgen = ["a rable_values = quera atomic_number 27 69 39 75 28 67 67 79	attic=_constant", "m tomicmass", "atomic_ verage_ionic_radius", ble_mendeleev + quera atomic_volume 6.70 18.10 19.80 8.85 6.60 18.70 10.20	radius", "electri , "density_of_soli abble_pymatgen boiling_point 3143.0 2220.0 3611.0 5900.0 3005.0 2968.0 3080.0	cal_resistivit d", "coefficie en_ghosh 0.143236 0.216724 0.121699 0.243516 0.147207 0.207795 0.261370	evaporation_heat 389.1 232.0 367.0 704.0 378.6 301.0 340.0	kpansion"] kpansion heat_of_formation 426.7 232.2 424.7 774.0 430.1 300.6 368.2	
	quer quer 0 1 2 3 4 5 6 7	rable_pymatgen ["a rable_values quera atomic_number 27 69 39 75 28 67 79 21 21	attic=_constant", "met tomicmass", "atomic_ verage_ionic_radius", ble_mendeleev + quera atomic_volume 6.70 18.10 19.80 8.85 6.60 18.70 10.20 15.00	radius", "electri , "density_of_soli able_pymatgen boiling_point 3143.0 2220.0 3611.0 5900.0 3005.0 2968.0 3080.0 3104.0	cal_resistivit d", "coefficie 0.143236 0.216724 0.121699 0.243516 0.147207 0.207795 0.261370 0.119383	evaporation_heat 389.1 232.0 367.0 704.0 378.6 301.0 340.0 332.7	xpansion"] heat_of_formation 426.7 232.2 424.7 774.0 430.1 300.6 368.2 377.8	

Use Keras to train neural networks

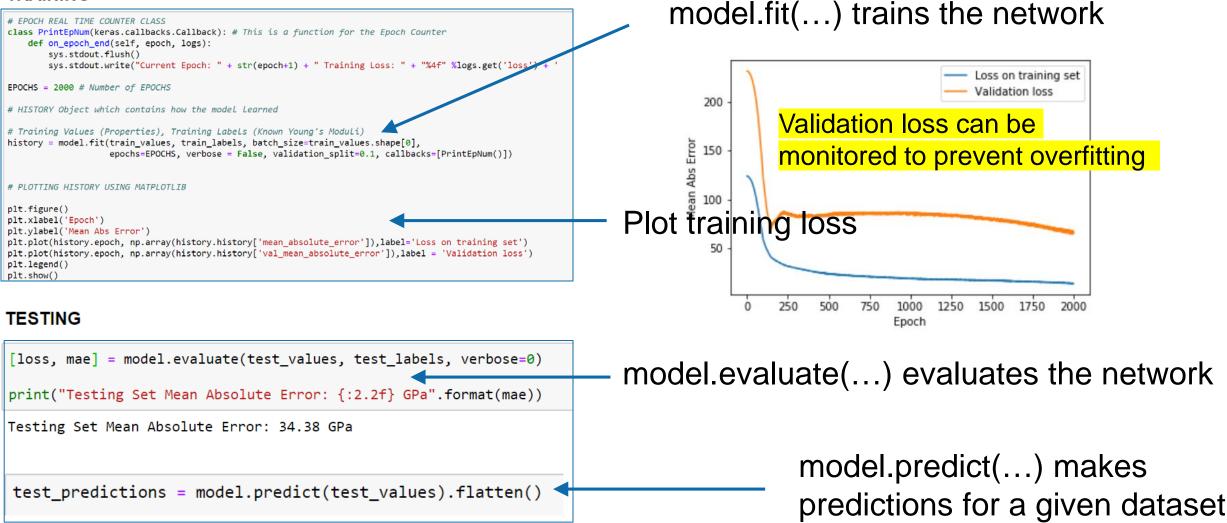
Keras: <u>https://keras.io/</u>


Query Pymatgen and Mendeleev for atomic number, melting point etc.

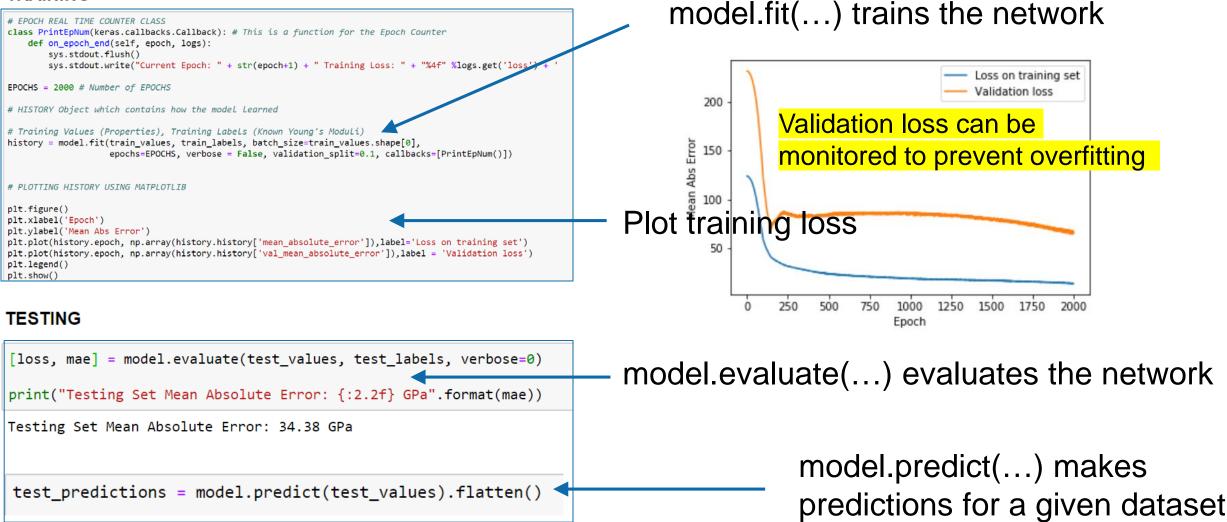
Organize data into a Pandas Dataframe

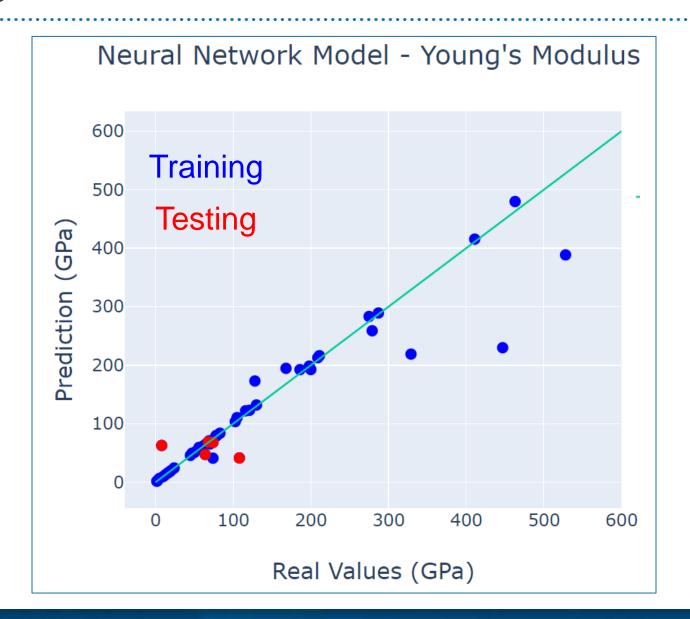
Pandas: https://pandas.pydata.org/

Step 3: Preprocess data and create network


2. Processing and Organizing Data

Step 4: Train and evaluate network


TRAINING



Step 4: Train and evaluate network

TRAINING

