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Why Risk Management Matters
Motivation

• Quantitative risk management,
particularly volatility forecasting, is
critically important to the economy.

• We applied quantum reservoir
computing for forecasting VIX (the
CBOE volatility index)

• VIX is a highly non-linear and
memory intensive ‘real-life’ signal
that is driven by market dynamics
and trader psychology and cannot be
expressed by a deterministic
equation.
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Using a NISQ reservoir as a computing engine
Introduction

Classical Reservoir

Quantum Reservoir

• Classical reservoir computing provides a road
map towards using ‘signal driven dynamical
systems’ to process information with non-von
Neumann architectures.

• The connections within the reservoir are not
trained; inputs are mapped to a high dimensional
space and the output from the high dimensional
state is trained to predict the desired function
using a simple method like linear regression.

• Quantum Reservoir Computing (QRC) exploits
quantum dynamics for machine learning.

• QRC does not require any sophisticated quantum
gate (natural dynamics is enough).

• Numerical experiments show that quantum
systems consisting of 5-7 qubits possess
computational capabilities comparable to
conventional recurrent neural networks of 100 to
500 nodes.
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Forecasting VIX (the CBOE volatility index)
Problem Statement and Results
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Forecast Approach
Mathematical Framing

r(t) = log
[ SPX(t)

SPX(t − 1)

]
(1)

u(t) = 1− exp[−(a0 + I(∆rt )a1∆rt )] (2)

s = Pr(1)− Pr(0)
~st = [s0(t), s1(t), s2(t), s3(t), s4(t), s5(t)]

~u(t) = [u0(t), u1(t), u2(t), u3(t), u4(t), u5(t)]
um(t) = r ′(t −m) where m ∈ [0, 5]

(3)

θm(t + 1) =
π

2

(
α ∗ um(t) + β ∗

sm(t) + 1
2

+ γ ∗ et

)
(4)

σ̂t+1 = ~w(t) ·~s(t)
εt+1 = σt+1 − σ̂t+1

(5)

MSE =
1
T

∑
ε2t (6)
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Device and Circuit Layout

We used the 53-qubit IBM Rochester Device for our experiment.
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Circuit space
Design Considerations

…

…

…

(a)

(b)

(c)

(d)

Design Considerations

• Synchronization
• Reservoir

Dimensionality
• Adequate Memory
• Response

Separability
• Adequate

Non-linearity
• Edge Density
• Feedback Strength
• Noise induced

regularization
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Memory Capacity by Complexity
Reservoir with proper parameters can have memory of past inputs

• Suppose u(t) and û(t) are two time series
which are same everywhere except a small
perturbation at t = t0 − 1. This means:

û(t0 − 1) = u(t0 − 1) + ∆, for t = t0 − 1
û(t) = u(t), for all t 6= t0 − 1

• When we feed u(t) or û(t) into the NISQ
reservoir, we get the spin time series
{s(t)} and {ŝ(t)} respectively (let’s
consider a one qubit reservoir for
simplicity). Let δS(t) denote the
difference between the outputs s(t) and
ŝ(t) i.e.

δs(t) = s(t)− ŝ(t)

• We say the reservoir has memory when
δs(t) and δs(0) are related i.e. δs(t) can
provide information about δs(0). The
stronger the mutual information between
δs(t) and δs(0), stronger is the memory
capacity.
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Empirically, three drivers explain
the observed peak
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Benchmarking and Application Result

• Non-linear Auto-regressive Moving
Average is a challenging machine
learning task with high degree of
non-linearity and significant memory
requirements (i.e. dependence on long
time lags).

• We compared the performance of our
quantum reservoir construction to other
published work. Our reservoir achieved
an NMSE of 6× 10−4. Others research
groups reported values in the range
[3× 10−3, 7.6× 10−6].
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Error and Spin Evolution

The prediction error shows very little bias
i.e. it is centered around zero.

Steady state view of the average spin of the 6 qubits.
These signals are linearly combined by an optimized
weight vector to produce the forecast.
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Quantum Computing in finance
Conclusion

• Better security, faster solution times and ability to solve classically intractable
problems are all sought-after objectives in the world of empirical finance.

• Hence, quantum computing (which promises these advances) should be a focus
area for researchers in finance.

• A fault-tolerant quantum computer could turbo-charge progress in several
sub-fields that deal with computationally expensive optimization problems (often
including big data) such as:

1 Asset Management e.g. portfolio optimization
2 Investment Banking e.g. option pricing
3 Retail Banking e.g. mortgage securitization schemes
4 Asset Liability Management e.g. liquidity optimization
5 Volatility forecasting (e.g. this work)
6 Financial crisis prediction
7 Compliance e.g. optimal monitoring and surveillance
8 Fraud Management e.g. credit card fraud detection
9 Legal e.g. searching for key clauses in vast database of legal documents

(potential Grover search application)
10 Secure Communications e.g. building next generation of hacker resistant

networks (potential quantum crypotgraphy application)
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