ECE 495N, Fall'07 MSEE B010, MWF 330P - 420P
 Fundamentals of Nanoelectronics HW\#3: Due Friday Sept. 28 in class.

All exercises, page numbers refer to
S.Datta, Quantum Transport: Atom to Transistor, Cambridge (2005)

ISBN 0-521-63145-9.

Please turn in a copy of your MATLAB codes for Problem 1.
You can use the MATLAB code at the end of the text as a guide, but the code you turn in should be your own work, not copied from the text.

Problem 1: A box has two degenerate energy levels having energy $\tilde{\varepsilon}=0.05 \mathrm{eV}$, before including any self-consistent field due to electron-electron interactions. Write a MATLAB code to calculate the current for a negative voltage on the drain (contact 2), assuming that the
 the energy level remains fixed with respect to the source and neglecting any broadening of the energy levels.
Assuming $\gamma_{1}=\gamma_{2}=0.005 \mathrm{eV}, U_{0}=0.1$ eV and $k_{B} T=0.025 \mathrm{eV}$ you should obtain a plot like this for the current n ormalized
to
$I($ max imum $)=\frac{q}{\mathrm{~h}} \frac{2 \gamma_{1} \gamma_{2}}{\gamma_{1}+\gamma_{2}}$

Show that the current value at the plateau for intermediate voltages (around 0.1 V) is given by $I($ plateau $)=\frac{q}{\mathrm{~h}} \frac{2 \gamma_{1} \gamma_{2}}{\gamma_{1}+2 \gamma_{2}}$ (Hint: at this voltage electrons are not available in either contact to take the channel to the 11 state; so it resides in the 00,01 and 10 states).

Problem 2: A channel has two energy levels ε_{1} and ε_{2} corresponding to four levels 00,01 , 10 and 11 in the multi-electron picture. Apply the law of equilibrium in the multi-electron picture to obtain the equilibrium occupation probabilities assuming zero interaction energy $\left(\mathrm{U}_{0}=0\right)$ for the four levels and show that

$$
P_{00}=\left(1-f_{1}\right)\left(1-f_{2}\right), P_{01}=\left(1-f_{1}\right) f_{2}, P_{10}=f_{1}\left(1-f_{2}\right) \text { and } P_{11}=f_{1} f_{2}
$$

where f_{1} and f_{2} are the equilibrium Fermi functions corresponding to the two energy levels.

Problem 3: A channel has four degenerate energy levels all having the same energy $\varepsilon=0$ eV with an interaction energy that can be written as $U_{e e}=U_{0} N(N-1) / 2$, where $U_{0}=0.1$ eV . The figure below shows the change in the equilibrium number of electrons, N inside the channel as the electrochemical potential μ is changed. What are the values of μ at which the transitions in N take place (labeled $\mu 1, \mu 2, \mu 3$ and $\mu 4$ in the figure) ?

