## ECE 495N, Fall'07 MSEE B010, MWF 330P – 420P Fundamentals of Nanoelectronics HW#3: Due Friday Sept.28 in class.

All exercises, page numbers refer to

**S.Datta, Quantum Transport: Atom to Transistor, Cambridge (2005)** ISBN 0-521-63145-9.

Please turn in a copy of your MATLAB codes for Problem 1.

You can use the MATLAB code at the end of the text as a guide,
but the code you turn in should be your own work, not copied from the text.

Problem 1: A box has degenerate energy levels having energy  $\tilde{\varepsilon} = 0.05$  eV, before including any self-consistent field due to electron-electron interactions. Write a MATLAB code to calculate the current for a negative voltage on the drain (contact 2), assuming that the the energy level remains fixed with respect to the source and neglecting any broadening of the energy levels. Assuming  $\gamma_1 = \gamma_2 = 0.005 \, eV$ ,  $U_0 = 0.1$ eV and  $k_BT = 0.025 \, eV$  you should obtain a plot like this for the current normalized  $I(\max imum) = \frac{q}{h} \frac{2\gamma_1 \gamma_2}{\gamma_1 + \gamma_2}$ 



Show that the current value at the plateau for intermediate voltages (around 0.1V) is given by  $I(plateau) = \frac{q}{h} \frac{2\gamma_1\gamma_2}{\gamma_1 + 2\gamma_2}$  (Hint: at this voltage electrons are not available in either contact

to take the channel to the 11 state; so it resides in the 00, 01 and 10 states).

**Problem 2:** A channel has two energy levels  $\varepsilon_1$  and  $\varepsilon_2$  corresponding to four levels 00, 01, 10 and 11 in the multi-electron picture. Apply the law of equilibrium in the multi-electron picture to obtain the equilibrium occupation probabilities assuming zero interaction energy  $(U_0 = 0)$  for the four levels and show that

$$P_{00} = (1 - f_1)(1 - f_2)$$
,  $P_{01} = (1 - f_1)f_2$ ,  $P_{10} = f_1(1 - f_2)$  and  $P_{11} = f_1f_2$ 

where  $f_1$  and  $f_2$  are the equilibrium Fermi functions corresponding to the two energy levels.

**Problem 3:** A channel has four degenerate energy levels all having the same energy  $\varepsilon = 0$  eV with an interaction energy that can be written as  $U_{ee} = U_0 N(N-1)/2$ , where  $U_0 = 0.1$  eV. The figure below shows the change in the *equilibrium* number of electrons, N inside the channel as the electrochemical potential  $\mu$  is changed. What are the values of  $\mu$  at which the transitions in N take place (labeled  $\mu 1$ ,  $\mu 2$ ,  $\mu 3$  and  $\mu 4$  in the figure)?

