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Noisy Intermediate Scale Quantum (NISQ) QEC

NISQ and beyond: quantum computing with and 
without quantum error correction



A Quantum Computer for Chemistry?

Simulated Quantum Computation of Molecular Energies, Alan Aspuru-Guzik, Anthony Dutoi, 
Peter J. Love, Martin Head-Gordon, Science, 309, 5741, (2005)



Simulating Fermions on a Quantum Computer
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Simulated Quantum Computation of Molecular Energies, Alan Aspuru-Guzik, Anthony Dutoi, 
Peter J. Love, Martin Head-Gordon, Science,  309, 5741, (2005)
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Molecules

Fermi-Hubbard Model



Two ways to simulate time evolution

H = Hk
k=1

m

∑Given a Hamiltonian:

Two natural ideas of an “easy” Hamiltonian:

H = cijXi ⊗ Xj
i, j
∑Two-Local

Three-Local H = cijkXi ⊗Yj ⊗ Zk
i, j
∑

1) Terms are local  (Direct Mappings)
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2) Terms are sparse (Compact Mappings)
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Peruzzo, et al Nature Communications, 5:4213, (2014), Farhi et al. arXiv:1411.4028 [quant-ph]


NISQ applications - Variational Algorithms



Variational Quantum Eigensolver - VQE

A variational eigenvalue solver on a quantum processor Peruzzo, et al Nature communications 5 (4213), (2014), 
Scalable Quantum Simulation of Molecular Energies, O’Malley et al. Physical Review X 6 (3), 031007, 
Quantum chemistry calculations on a trapped-ion quantum simulator, Hempel et al, http://arxiv.org/abs/1803.10238 
,

We want to find the smallest eigenvalue of:

Variationally minimize: 

H = α
i
P
i

P
i
∈S
∑

Classically separate minimization of each term fails - 
rdms do not correspond to global state


Quantumly one can variationally minimize a global 
quantum state, evaluate terms separately

H = α
i
P
i

P
i
∈S
∑



Nasty, brutish and short: VQE on NISQ devices

A variational eigenvalue solver on 
a quantum processor Peruzzo, et 
al Nature communications 5 
(4213), (2014)

one measures the phase Ent and collapses the system
register to the state jni with probability janj2.
Our PEA implementation is based on a modification of

Kitaev’s iterative phase estimation algorithm [8,35]. The
circuit we use is shown in Fig. 4 and detailed descriptions
of the subroutines we use to control UTrotð2kt0Þ on an
ancilla are shown in Appendix C. The rotation ZΦðkÞ in
Fig. 4 feeds back classical information from the prior k − 1
measurements using phase kickback as

ΦðkÞ ¼ π
Xk−1

l¼0

jl
2l−kþ1

: ð7Þ

With iterative phase estimation, one measures the phase
accumulated on the system one bit at a time. Even when a0
is very small, one can use iterative phase estimation to
measure eigenvalues if the system register remains coherent
throughout the entire phase determination. Since the
Hartree-Fock state has strong overlap with the ground state
of molecular hydrogen (i.e., jh0jϕij2 > 0.5), we are able to
measure each bit independently with a majority-voting
scheme, reducing coherence requirements. For b bits,
the ground-state energy is digitally computed as a binary
expansion of the measurement outcomes,

Eb
0 ¼ −

π
t0

Xb−1

k¼0

jk
2kþ1

: ð8Þ

Experimentally computed energies are plotted alongside
VQE results in Fig. 3(a). Because energies are measured

digitally in iterative phase estimation, the experimentally
determined PEA energies in Fig. 3(a) agree exactly with
theoretical simulations of Fig. 4, which differ from the exact
energies due to the approximation of Eq. (5). The primary
difficulty of the PEA experiment is that the controlled
application of UTrotð2kt0Þ requires complex quantum
circuitry and long coherent evolutions. Accordingly, we
approximate the propagator in Eq. (5) using a single
Trotter step (ρ ¼ 1), which is not sufficient for chemical
accuracy. Our PEA experiment shows an error in the
dissociation energy of ð1% 1Þ × 10−2 hartree.
In addition to taking only one Trotter step, we perform

classical simulations of the error in Eq. (5) under different
orderings of the Hγ in order to find the optimal Trotter
sequences at each value ofR. The Trotter sequences we use
in our experiment as well as parameters such as t0 are
reported in Appendix C. Since this optimization is intrac-
table for larger molecules, our PEA protocol benefits from
inefficient classical preprocessing (unlike our VQE imple-
mentation). Nevertheless, this is the first time the canonical
quantum algorithm for chemistry has been executed in its
entirety and, as such, represents a significant step towards
scalable implementations.

IV. EXPERIMENTAL METHODS

Both algorithms are implemented with a superconduct-
ing quantum system based on the Xmon [48], a variant of
the planar transmon qubit [49], in a dilution refrigerator
with a base temperature of 20 mK. Each qubit consists
of a superconducting quantum interference device

(a) (b)

FIG. 3. Computed H2 energy curve and errors. (a) Energy surface of molecular hydrogen as determined by both VQE and PEA. VQE
approach shows dissociation energy error of ð8% 5Þ × 10−4 hartree (error bars on VQE data are smaller than markers). PEA approach
shows dissociation energy error of ð1% 1Þ × 10−2 hartree. (b) Errors in VQE energy surface. Red dots show error in the experimentally
determined energies. Green diamonds show the error in the energies that would have been obtained experimentally by running the circuit
at the theoretically optimal θ instead of the experimentally optimal θ. The discrepancy between blue and red dots provides experimental
evidence for the robustness of VQE, which could not have been anticipated via numerical simulations. The gray band encloses the
chemically accurate region relative to the experimental energy of the atomized molecule. The dissociation energy is relative to the
equilibrium geometry, which falls within this envelope.
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FIG. 3. a) Potential energy curves of the molecular hydrogen ground state. The black line corresponds to the theoretical value
calculated in the chosen minimal basis. All other lines are derived from weighted sinusoidal fits to the energy surfaces formed
from the experimentally obtained expectation values. The data sets vary the number of qubits, the Hartree Fock input states,
encodings and gate fidelities as listed in the legend below the figures. b) Data from panel a) normalized to the theoretical
dissociation energy at large internuclear separations R. The dashed and dotted lines indicate the well depth associated with
the binding energy of the molecule and the position of the energy minimum, respectively. c) VQE implementation. The BK
HF = |01i parameter scan fit result is shown as experimental reference with its 1� confidence band. Points with error bars
indicate the five VQE runs performed. The inset shows the last iterations of one particular run that failed to converge to the
target value (blue line) with experimental data depicted by red and a noise-free circuit simulation by black symbols.

illustrated in Figure 3.b. This depiction more clearly re-
veals the respective upshift in energy with respect to the
calculated binding energy (or well depth) and the simul-
taneously occurring shift in the position of the energy
minimum towards larger internuclear distances.

We proceed to implement the VQE algorithm in full
at five di↵erent internuclear separations R, yielding the
results shown in Figure 3.c. For each configuration R, we
start at a random initial value of ✓0, prepare |'BK(✓0)i,
measure the expectation values hH`(✓0)i corresponding
to the terms in the Hamiltonian and pass the measure-
ment results to a Nelder-Mead simplex algorithm running
on a classical computer. Here, the energy is calculated
according to Eq. (7) before a new value for ✓ is suggested
for the next iteration. In parallel, we execute a noise-free
simulation of the circuit at each iteration in order to mon-
itor the convergence towards the theoretically expected
energy.

Generally, the algorithm converges in simulation and
experiment. Residual energy fluctuations seen in the
experimental results (cf. Figure 9.a) are related to (1)
measurement errors and (2) noisy gate operations. The
first source of error stems from quantum projection noise
(QPN) [99] that scales proportional to

p
1/r for r repeti-

tions of the circuit (here, r  1000 for the VQE points).
The second source of error is related to the experimental
environment and manifests itself, e.g., in laser intensity
fluctuations and transient electrical noise coupling to the
motion of the ions. Both introduce a loss of fidelity in dig-
ital quantum simulations as shown in our earlier work [24]
and can be mitigated through technical improvements.

As a result, we did not fix the number of VQE it-
erations to a specific value, but instead implemented

a sinusoidal fit to the 1D parameter space of the en-
ergy explored throughout all iterations (cf. Figure 9.b),
with each point weighted according to the QPN contri-
butions from its constituent expectation value measure-
ments. Figure 3.c shows each run’s result superimposed
on the previously discussed parameter scan. Error bars
for the VQE points are derived from the above fitting
procedure. In some cases, e.g. R = 0.6 shown in the Fig-
ure 3.c inset, the simplex algorithm appears to get stuck,
which likely is the result of a premature reduction in
the step-width of ✓ caused by the noise sources discussed
above. We return to this e↵ect in the next section.

V. LITHIUM HYDRIDE

We now increase the complexity by turning to a het-
eronuclear molecule with four electrons and aim to sim-
ulate the ground state energy of lithium hydride (LiH).
This requires the introduction of additional variational
parameters and thereby increases the circuit depth. LiH
is also a natural small-molecule example and was previ-
ously simulated using four superconducting qubits in [61].
We implement its simulation using three ion qubits.

A. Encoding the problem

We again begin with the classical preprocessing step,
choosing a minimal basis set of Slater-type orbitals rep-
resented by linear combinations of 6 Gaussian functions
(STO-6G). A Hartree-Fock calculation then leads us to
determine an energy-ordered molecular orbital basis into

the theoretical values. At the conclusion of the optimization, we
retain full knowledge of the experimental parameters, which can
be used for efficient reconstruction of the state |cS in the event
that additional physical or chemical properties are required.

Discussion
QEE uses relatively few quantum resources compared to QPE.
Broadly speaking, QPE requires a large number of n-qubit
quantum controlled operations to be performed in series—
placing considerable demands on the number of components and
coherence time—while the inherent parallelism of our scheme
enables a small number of n-qubit gates to be exploited many
times, drastically reducing these demands. Moreover, adding
control to arbitrary unitary operations in practice is difficult, if
not impossible, for current quantum architectures (although a
proposed scheme to add control to arbitrary unitary operations
has recently been demonstrated34). To give a numerical example,
the QPE circuit for a 4! 4 Hamiltonian such as that
demonstrated here would require at least 12 CNOT gates, while
our method only requires one. We note that the resource saving
provided by QEE incurs a cost of polynomial repetitions of the
state preparation, as compared to the single copy required by

QPE. In many cases (for example, our photonic implementation),
repeated preparation of a state is not significantly harder than
preparation of a single copy, requiring only a polynomial
overhead in time without any modification of the device.

In implementing QVE, the device prepares ansatz states that
are defined by a polynomial set of parameters. This ansatz might
be chosen based on knowledge of the physical system of interest
(as for the unitary coupled cluster and typical quantum chemistry
ansätze), thus determining the device design. However, our
architecture allows for an alternative and potentially more
promising approach, where the device is first constructed based
on the available resources and we define the set of states that the
device can prepare as the ‘device ansatz’. Due to the quantum
nature of the device, this ansatz can be very distinct from those
used in traditional quantum chemistry. With this alternative
approach the physical implementation is then given by a known
sequence of quantum operations with adjustable parameters—
determined at the construction of the device—with a maximum
depth fixed by the coherence time of the physical qubits. This
approach, while approximate, provides a variationally optimal
solution for the given quantum resources and may still be able to
provide qualitatively correct solutions, just as approximate
methods do in traditional quantum chemistry (for example,
Hartree Fock). The unitary coupled cluster ansatz (equation (4))
provides a concrete example where our approach provides an
exponential advantage over known classical techniques. For this
ansatz, with as few as 40–50 qubits, one expects to manipulate a
state that is not efficient to simulate classically, and can provide a
solution superior to the classical gold standard, non-unitary
coupled cluster.

We have developed and experimentally implemented a new
approach to solving the eigenvalue problem with quantum
hardware. QEE shares with QPE the need to prepare a good
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Figure 3 | Finding the ground state of He–Hþ for a specific molecular
separation R¼90 pm. (a) Experimentally computed energy /HS
(coloured dots) as a function of the optimization step j. The colour
represents the tangle (degree of entanglement) of the physical state,

estimated directly from the state parameters ffj
ig. The red lines indicate

the energy levels of H(R). The optimization algorithm clearly converges to
the ground state of the molecule, which has small but non-zero tangle. The
crosses show the energy calculated at each experimental step, assuming an
ideal quantum device. (b ) Overlap |/cj|cGS between the experimentally
computed state |cjS at each optimization step j and the theoretical ground
state of H, |cGS. Error bars are smaller than the data points. Further details
are provided in the Methods section, Supplementary Table 1 and
Supplementary Methods.
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Figure 4 | Bond dissociation curve of the He–Hþ molecule. This curve
is obtained by repeated computation of the ground-state energy (as shown
in Fig. 3) for several H(R) values. The magnified plot shows that after
correction for the measured systematic error the data overlap with the
theoretical energy curve, and, importantly, we can resolve the molecular
separation of minimal energy. Error bars show the standard deviation of the
computed energy, as described in the Methods section.
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FIG. 2. Experimental implementation of our scheme. (a) Quantum state preparation and measurement of the expectation
values h |�i ⌦ �j | i are performed using a quantum photonic chip. Photon pairs, generated using spontaneous parametric
down-conversion are injected into the waveguides encoding the |00i state. The state | i is prepared using thermal phase shifters
�1�8 (orange rectangles) and one CNOT gate and measured using photon detectors. Coincidence count rates from the detectors
D1�4 are passed to the CPU running the optimization algorithm. This computes the set of parameters for the next state and
writes them to the quantum device. (b) A photograph of the QPU.

If a quantum state is characterized by an exponentially
large number of parameters, it cannot be prepared with
a polynomial number of operations. The set of e�ciently
preparable states are therefore characterized by polyno-
mially many parameters, and we choose a particular set
of ansatz states of this type. Under these conditions, a
classical search algorithm on the experimental parame-
ters which define | i, needs only explore a polynomial
number of dimensions—a requirement for the search to
be e�cient.

One example of a quantum state parametrized by a
polynomial number of parameters is the unitary coupled
cluster ansatz [4]

| i = e
T�T †

|�iref (4)

where T is the cluster operator (defined in the Appendix )
and |�iref is some reference state, normally taken to be
the Hartree-Fock ground state. There is currently no
known e�cient classical algorithm based on these ansatz
states. However, non-unitary coupled cluster ansatz is
sometimes referred to as the “gold standard of quantum
chemistry” as it is the standard of accuracy to which
other methods in quantum chemistry are often compared.

The unitary version of this ansatz is thought to yield
superior results to even this “gold standard” [4]. Details
of e�cient construction of the unitary coupled cluster
state using a quantum device are given in the Appendix
(see also Ref. [29]).

Prototype demonstration
We have implemented the QPU using integrated quan-
tum photonics technology [30]. Our device, shown
schematically in Fig. 2 is a reconfigurable waveguide chip
that implements several single qubit rotations and one
two-qubit entangling gate and can prepare an arbitrary
two-qubit pure state. This device operates across the
full space of possible configurations with mean statisti-
cal fidelity F > 99% [31]. The state is prepared, and
measured in the Pauli basis, by setting 8 voltage driven
phase shifters and counting photon detection events with
silicon single photon detectors.

The ability to prepare an arbitrary two-qubit separable
or entangled state enables us to investigate 4⇥ 4 Hamil-
tonians. For the experimental demonstration of our al-
gorithm we choose a problem from quantum chemistry,
namely determining the bond dissociation curve of the
molecule He-H+ in a minimal basis. The full configura-
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FIG. 1: Repetition code: device and algorithm. (a) The repetition
code is a one-dimensional variant of the surface code, and is able to
protect against X̂ (bit-flip) errors. The code is implemented using
an alternating pattern of data and measure qubits. (b) Optical mi-
crograph of the superconducting quantum device, consisting of nine
Xmon20 transmon qubits with individual control and readout, with
a nearest-neighbour coupling scheme. (c) The repetition code algo-
rithm uses repeated entangling and measurement operations which
detect bit-flips, using the parity scheme on the right. Using the out-
put from the measure qubits during the repetition code, the initial
state can be protected by detecting physical errors. Measure qubits
are initialized into the |0i state and need no reinitialization as mea-
surement is QND.

the repetition code is shown in Fig. 2a, for three cycles (in
time) and nine qubits. This is the natural extension of the
schematic in Fig. 1c, optimized for our hardware (Supplemen-
tary Information). The figure illustrates four distinct types of
bit-flip errors (stars): measurement error (gold), single-cycle
data error (purple), two-cycle data error (red), and a data er-
ror after the final cycle (blue). Controlled-NOT (CNOT) gates
propagate bit-flip errors on the data qubit to the measure qubit.
Each of these errors is typically detected at two locations if in
the interior and one location if at the boundary; we call these
“detection events”. The error connectivity graph21 is shown in
Fig. 2b, where the grey lines indicate every possible pattern of
detection events that can arise from a single error. The last col-
umn of values for the ẐẐ operators in Fig. 2b are constructed
from the data qubit measurements, so that errors between the
last cycle and data qubit measurement can be detected (Sup-
plementary Information).

In the absence of errors, there are two possible patterns of
sequential measurement results. If a measure qubit’s neigh-

bouring data qubits are in the |00i or |11i state, the measure
qubit will report a string of identical values. If the data qubits
are in the |01i or |10i state, the measure qubit will report al-
ternating values, as measurement is QND. Single data bit-flip
errors make the measurement outcomes switch between these
two patterns. For example, if the measurement outcomes for
three cycles are 0, 0, and 1, this indicates a change from the
identical to the alternating pattern in the last measurement,
and hence a detection event. Explicitly, with mt the measure
qubit outcome at cycle t and � the exclusive OR (XOR) oper-
ator, for each of the two patterns we have bt = mt�1 �mt =
0 or 1. A detection event at cycle t is then identified when
Dt = bt�1 � bt = 1.

We use minimum-weight perfect matching22–24 to decode
to physical errors, based on the pattern of detection events
and an error model for the system. Intuitively, it connects
detection events in pairs or to the boundary using the short-
est weighted path length. It is important to note that errors
can lead to detection event pairs that span multiple cycles, ne-
cessitating the need for multi-round analysis as opposed to
round-by-round. See Supplementary Information for details.

To study the ability of our device to preserve quantum
states, we initialised the data qubits into a GHZ state [(|000i+

FIG. 2: Error propagation and identification. (a) The quantum
circuit for three cycles of the repetition code, and examples of er-
rors. Errors propagate horizontally in time, and vertically through
entangling gates. Different errors lead to different detection patterns:
An error on a measure qubit (gold) is detected in two subsequent
rounds. Data qubit errors (purple, red, blue) are detected on neigh-
bouring measurement qubits in the same or next cycle. Data errors
after the last round (blue) are detected by constructing the final set of
ẐẐ eigenvalues from the data qubit measurements. (b) The connec-
tivity graph for the quantum circuit above, showing measurements
and possible patterns of detection events (grey), see text. The exam-
ple detection events and their connections are highlighted, the corre-
sponding detected errors are shown on the right, which when applied,
will recover the input data qubit state.
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Because the qubits are all initialized in their ground state | 0〉 , the first 
set of Z rotations of Uq,0(θ) is not implemented, resulting in a total of 
p =  N(3d +  2) independent angles. In the experiment, the evolution 
time τ and the individual couplings in H0 can be controlled. However, 
numerical simulations indicate that accurate optimizations are 
obtained for fixed-phase entanglers UENT, leaving the p control angles 
as  variational parameters. Our hardware-efficient approach does not 
rely on the accurate implementation of specific two-qubit gates and can 
be used with any UENT that generates sufficient entanglement. This is 
in  contrast to unitary coupled-cluster trial states, which require high- 
fidelity  quantum gates that approximate a unitary operator tailored on 
the basis of a theoretical ansatz. For the experiments considered here, 
the entanglers UENT are composed of a sequence of two-qubit cross- 
resonance gates23. Simulations as a function of entangler phase show 
plateaus of minimal energy error around gate phases that correspond 
to the maximal pairwise concurrence; see Supplementary Information. 
We therefore set the entangler evolution time τ at the beginning of such 
plateaus, to reduce decoherence effects.

In our experiments, the Z rotations are implemented as frame 
changes in the control software24, whereas the X rotations are imple-
mented by appropriately scaling the amplitude of calibrated Xπ pulses, 
using a fixed total time of 100 ns for every single-qubit rotation. The 
cross-resonance gates that compose UENT are implemented by driving 
a control qubit Qc with a microwave pulse that is resonant with a target 
qubit Qt. We use Hamiltonian tomography of these gates to determine 
the strengths of the various interaction terms, and the gate time for 

maximal entanglement23. We set our two-qubit gate times at 150 ns, to 
try to minimize the effect of decoherence without compromising the 
accuracy of the optimization outcome; see Supplementary Information.

After each trial state is prepared, we estimate the associated energy 
by measuring the expectation values of the individual Pauli terms in 
the Hamiltonian. These estimates are affected by stochastic fluctua-
tions due to finite sampling. Different post-rotations are applied after 
trial-state preparation for sampling different Pauli operators (Fig. 1c, d). 
We group the Pauli operators into tensor product basis sets that require 
the same post-rotations. We numerically show that such grouping 
reduces the energy fluctuations, while keeping the same total number 
of samples, thereby reducing the time overhead for energy estimation; 
see Supplementary Information. The energy estimates are then used 
in a gradient descent algorithm that relies on a simultaneous perturba-
tion stochastic approximation (SPSA) to update the control parameters. 
The SPSA algorithm approximates the gradient using only two energy 
measurements, regardless of the dimensions of the parameter space p, 
achieving a level of accuracy comparable to that of standard gradient 
descent methods, in the presence of stochastic fluctuations10. This is 
crucial for optimizing over many qubits and long depths for trial-state 
preparation, enabling us to optimize over a number of parameters as 
large as p =  30.

To address molecular problems on our quantum processor, we rely on 
a compact encoding of the second-quantized fermionic Hamiltonians 
onto qubits. The Hamiltonian for molecular H2 has four spin orbitals, 
representing the spin-degenerate 1s orbitals of the two hydrogen atoms. 
We use a binary tree encoding11 to map the Hamiltonian to a four-
qubit system, and remove the two qubits that are associated with the 
spin parities of the system9. The Hamiltonian for BeH2 is defined on 
the basis of the 1s, 2s and 2px orbitals that are associated with Be, and 
the 1s orbital that is associated with each H atom, for a total of ten spin 
orbitals. We then assume perfect filling of the innermost two 1s spin 
orbitals of Be, after shifting their energies by diagonalizing the non- 
interacting part of the fermionic Hamiltonian. We map the eight- 
spin-orbital Hamiltonian of BeH2 using parity mapping and, as in 
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Figure 1 | Quantum chemistry on a superconducting quantum 
processor. Solving electronic-structure problems on a quantum computer 
relies on mappings between fermionic and qubit operators. a, Parity 
mapping of eight spin orbitals (drawn in blue and red, not to scale) onto 
eight qubits, which are then reduced to six qubits owing to fermionic 
spin and parity symmetries. The length of the bars indicate the parity of 
the spin orbitals that are encoded in each qubit. b, False-coloured optical 
micrograph of the superconducting quantum processor with seven 
transmon qubits. These qubits are coupled via two coplanar waveguide 
resonators (violet) and have individual coplanar waveguide resonators 

for control and read-out. c, Hardware-efficient quantum circuit for trial-
state preparation and energy estimation, shown here for six qubits. For 
each iteration k, the circuit is composed of a sequence of interleaved 
single-qubit rotations Uq,d(θk) and entangling unitary operations UENT 
that entangle all of the qubits in the circuit. A final set of post-rotations 
(I, X− π/2 or Yπ/2) before the qubits are read out is used to measure the 
expectation values of the individual Pauli terms in the Hamiltonian and to 
estimate the energy of the trial state. d, An example of the pulse sequence 
for the preparation of a six-qubit trial state, in which UENT is implemented 
as a sequence of two-qubit cross-resonance gates.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

LETTERRESEARCH

2 4 4  |  N A T U R E  |  V O L  5 4 9  |  1 4  S E P T E M B E R  2 0 1 7

the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.

CR
2–4

CR 6–
5

CR
1–3

CR
2–4

CR
1–3

CR
2–4

0 1 2 3 4

Interatomic distance (Å)

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

En
er

gy
 (h

ar
tr

ee
)

0

50

100

1 2 3 4 5

Interatomic distance (Å)

–8.0

–7.8

–7.6

–7.4

–7.2

–7.0

–6.8

–6.6

0

20

40

C
R

2–
1

Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 

H H 

H Li 

1 2 3 4 5

Interatomic distance (Å)

–15.5

–15.0

–14.5

–14.0

–13.5

–13.0

–12.5

–12.0

0

20

40

C
R

2–
1CR4–5

Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 

Be 
H H 

a b

 

c 

Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

LETTERRESEARCH

2 4 4  |  N A T U R E  |  V O L  5 4 9  |  1 4  S E P T E M B E R  2 0 1 7

the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 

0 50 100 150 200 250
Iteration, k

–15.6

–15.4

–15.2

–15.0

–14.8

–14.6

–14.4

–14.2

–14.0

–13.8

–13.6

En
er

gy
 (h

ar
tr

ee
)

Exact

Final experimental result

0 200

–π

–π/2

0

π/2

π

T jq,
i,±

 (r
ad

)
 

X
q

T2
q,0,± Z

q

T 3
q,0,± Z

q

T1
q,1,±

X q
T2

q,1,± Z
q

T 3
q,1,±

'

0 200 0 200 0 200 0 200

Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.

CR
2–4

CR 6–
5

CR
1–3

CR
2–4

CR
1–3

CR
2–4

0 1 2 3 4

Interatomic distance (Å)

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

En
er

gy
 (h

ar
tr

ee
)

0

50

100

1 2 3 4 5

Interatomic distance (Å)

–8.0

–7.8

–7.6

–7.4

–7.2

–7.0

–6.8

–6.6

0

20

40

C
R

2–
1

Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 

H H 

H Li 

1 2 3 4 5

Interatomic distance (Å)

–15.5

–15.0

–14.5

–14.0

–13.5

–13.0

–12.5

–12.0

0

20

40
C

R
2–

1CR4–5

Q1 

Q2 

Q3 Q4 Q5 

Q7 

Q6 

Be 
H H 

a b

 

c 

Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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From Quantum Chemistry to Quantum Field Theory

Fixed particle number

Basis representations requiring tens to 
hundreds of (logical) qubits

Static properties

No sensible relativistic theory with 
fixed particle number

Use a grid as a regulator - discretize 
field values. Need ~thousands of qubits

Scattering cross sections

Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity, R Babbush, C Gidney, D Berry, N Wiebe, 
J McClean, A Paler, A Fowler, Hartmut Neven Physical Review X 8 (4), 041015, (2018)



Quantum Algorithms for Quantum
Field Theories
Stephen P. Jordan,1* Keith S. M. Lee,2 John Preskill3

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central
role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering
probabilities in a massive quantum field theory with quartic self-interactions (f4 theory) in
spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles,
their energy, and the desired precision, and applies at both weak and strong coupling. In the
strong-coupling and high-precision regimes, our quantum algorithm achieves exponential
speedup over the fastest known classical algorithm.

Thequestion whether quantum field theories
can be efficiently simulated by quantum
computers was first posed by Feynman

three decades ago when he introduced the notion
of quantum computers (1). Since then, efficient
quantum algorithms for simulating the dynamics
of quantum many-body systems have been
developed theoretically (2–4) and demonstrated
experimentally (5–7). Quantum field theory, which
applies quantum mechanics to functions of space
and time, presents additional technical challenges,
because the number of degrees of freedom per
unit volume is formally infinite.

We show that quantum computers can ef-
ficiently calculate scattering probabilities in
continuum f4 theory to an arbitrary degree of pre-
cision. We have chosen f4 theory, a scalar theory
with quartic self-interactions, because it is among
the simplest interacting quantum field theories
and thus illustrates essential issues without un-
necessary complications. Our work introduces
several new techniques, including creation of the
initial state by a generalization of adiabatic state
preparation and the use of effective field theory
to analyze spatial discretization errors.

In complexity theory, the efficiency of an al-
gorithm is judged by how its computational de-
mands scale with the problem size or some other
quantity associated with the problem’s intrinsic
difficulty. An algorithm with polynomial-time
asymptotic scaling is considered to be feasible,
whereas one with superpolynomial (typically, ex-
ponential) scaling is considered infeasible. This
classification has proved to be a useful guide in
practice.

Traditional calculations of quantum field
theory scattering amplitudes rely on perturba-

tion theory—namely, a series expansion in
powers of the coupling (the coefficient of the
interaction term), which is taken to be small.
A powerful and intuitive way of organizing
this perturbative expansion is through Feyn-
man diagrams, in which the number of loops
is associated with the power of the coupling.
A reasonable measure of the computational com-
plexity of perturbative calculations is therefore
the number of Feynman diagrams, which is de-
termined by combinatorics and grows factorial-
ly with the number of loops and the number of
external particles.

If the coupling constant is insufficiently
small, the perturbation series does not yield cor-
rect results. In f4 theory, for D = 2, 3 spacetime
dimensions, by increasing the coupling l0, one
eventually reaches a quantum phase transition at
some critical coupling lc (8–10). In the parameter
space near this phase transition, perturbative
methods become unreliable; this region is re-
ferred to as the strong-coupling regime. There
are then no known feasible classical methods
for calculating scattering amplitudes, although
lattice field theory can be used to obtain static
quantities such as mass ratios. Even at weak
coupling, the perturbation series is not conver-
gent, although it is asymptotic (11–13). Includ-
ing higher-order contributions beyond a certain
point makes the approximation worse. There is
thus a maximum possible precision achievable
perturbatively.

We simulate a process in which initially well-
separated massive particles with well-defined
momenta scatter off each other. The input to our
algorithm is a list of the momenta of the in-
coming particles, and the output is a list of the
momenta of the outgoing particles produced
by the physical scattering process. At relativistic
energies, the number of outgoing particles may
differ from the number of incoming particles.
In accordance with quantum mechanics, the in-
coming momenta do not uniquely determine
the outgoing momenta, but rather a probability
distribution over possible outcomes. Upon re-
peated runs, our quantum algorithm samples

from this distribution. The asymptotic scaling
of the algorithm is given in Eq. 9 and Table 1. The
simulated scattering processes closely match ex-
periments in particle accelerators, which are the
standard tools to probe quantum field-theoretical
effects.

The issue of gauge symmetries in quantum
simulation of lattice field theories has been
addressed in (14). There is an extensive literature
on analog simulation of interacting quantum field
theories using ultracold atoms (15–26), trapped
ions (27, 28), and Josephson-junction arrays (29).
Much work has also been done on analog sim-
ulation of special-relativistic quantum mechani-
cal effects such as zitterbewegung and the Klein
paradox, as well as general-relativistic quantum
effects such as Hawking radiation [for recent
reviews, see (30, 31)]. Our work, in contrast to
these studies, addresses digital quantum sim-
ulation, with explicit consideration of convergence
to the continuum limit and efficient preparation of
wave packet states for the computation of dy-
namical quantities such as scattering probabil-
ities. Our analysis includes error estimates of all
parts of our algorithm.

Representing fields with qubits. Although
quantum field theory is typically expressed in
terms of Lagrangians and within the interaction
picture, our algorithm is more naturally described
in the formalism of Hamiltonians and within
the Schrödinger picture. We start by defining a
lattice f4 theory and subsequently address con-
vergence to the continuum theory. (In D = 4,
the continuum limit is believed to be the free the-
ory. Nonetheless, because the coupling shrinks
only logarithmically, scattering processes for
particles with small momenta in lattice units
are interesting to compute.) Let W ¼ aZd

%L, that
is, an %L" :::" %L lattice in d = D − 1 spatial
dimensions with periodic boundary conditions
and lattice spacing a. The number of lattice
sites is V ¼ %Ld . For each x ∈ Ω, let f(x) be a
continuous, real degree of freedom—interpreted
as the field at x—and let p(x) be the correspond-
ing canonically conjugate variable. In canonical
quantization, these degrees of freedom are pro-
moted to Hermitian operators with the commu-
tation relation

½f(x), p(y)$ ¼ ia−ddx,y1 ð1Þ

We use units with ħ = c = 1. f4 theory on the
lattice Ω is defined by the Hamiltonian

H ¼ ∑
x∈W

ad
1
2
p(x)2 þ 1

2
(∇af)2(x) þ

!

1
2
m2

0f(x)
2 þ l0

4!
f(x)4

"
ð2Þ

where ∇af denotes a discretized derivative (that
is, a finite-difference operator) and m0 is the
particle mass of the corresponding noninteract-
ing (l0 = 0) theory.
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Two approaches: 

1) Discretize field config. and represent directly. 
 

2) Quantum link models: discrete gauge variables, integrate 
out gauge fields, simulate complex spin model.

Daunting: 203 grid for 3+1 QCD: 400000 qubits.

Nuclear Physics A 00 (2018) 1–8

Nuclear
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Towards Quantum Simulating QCD

Uwe-Jens Wiese

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, 3012 Bern, Switzerland

Abstract
Quantum link models provide an alternative non-perturbative formulation of Abelian and non-Abelian lattice gauge theories. They
are ideally suited for quantum simulation, for example, using ultracold atoms in an optical lattice. This holds the promise to address
currently unsolvable problems, such as the real-time and high-density dynamics of strongly interacting matter, first in toy-model
gauge theories, and ultimately in QCD.

Keywords: Quantum simulation, sign problem, real-time dynamics of gauge theories

1. Introduction

Strongly interacting quantum matter may undergo intriguing real-time evolution. Prominent examples range from
the expansion of an ultracold atomic gas released from a trap, or the out-of-equilibrium dynamics of a strongly corre-
lated electron system, to an expanding quark-gluon plasma produced in a heavy-ion collision. Due to the enormous
dimension of the Hilbert space, which increases exponentially with the system size, understanding the dynamics of
large strongly coupled quantum systems is a notoriously hard problem. Even when considered in thermal equilib-
rium, Euclidean time Monte Carlo simulations of such systems often su↵er from sign problems. For example, the
fermionic Hubbard model away from half-filling or QCD at high quark density are currently inaccessible to first prin-
ciples Monte Carlo simulations due to very severe fermion sign problems, thus preventing a better understanding of
high-temperature superconductors or the dense cores of neutron stars. Real-time simulations of strongly interacting
systems are also currently beyond reach, due to very severe complex weight problems in the corresponding real-time
path integrals. Some sign problems even fall in the complexity class of NP-complete problems [1], which can be
solved in polynomial time on a hypothetical “non-deterministic” computer, but for which no polynomial-time algo-
rithm is known on an ordinary classical computer modeled by a Turing machine. Since one expects that NP , P
(where P is the complexity class of problems that are solvable in polynomial time on a classical computer), a generic
solution for general sign problems is unlikely to exist. This does not exclude that specific sign problems may indeed
be solvable on classical computers. In fact, several severe sign or complex action problems have been solved with
the meron-cluster algorithm [2, 3, 4] or with the fermion bag approach [5, 6, 7]. Even the real-time evolution of a
large strongly coupled quantum spin system, whose dynamics is entirely driven by measurements, has recently been
simulated successfully with a cluster algorithm [8].

While it is not excluded that the doped Hubbard model or QCD at high quark density can be simulated on classical
computers, it is already clear that a universal quantum computer could indeed overcome several of the limitations of
classical computers [9, 10]. In particular, since it operates with quantum hardware, a quantum computer can naturally
manipulate complex amplitudes and thus does not su↵er from sign or complex weight problems. Although it is not
known whether a quantum computer could solve NP-hard problems, it would be extremely useful for deepening our
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Static observable in QCD - the parton distribution function

LHC collides protons - composite 
particles

Momentum distribution of 
constituents captured by the 
parton distribution function (PDF).

Uncertainty in PDF can dominate.

Parton physics on a quantum computer H. Lamm, S. Lawrence, Y. Yamauchii arXiv:1908.10439 (2019)
Deeply inelastic scattering structure functions on a hybrid quantum computer, N. Mueller, A. Tarasov, and 
R. Venugopalan Phys. Rev. D 102, 016007
Computing real time correlation functions on a hybrid classical/quantum computer N Mueller, A Tarasov, R 
Venugopalan



The Light Front formulation
“Ab initio quantum chemistry is an emerging computational 
area that is fifty years ahead of lattice gauge theory, a 
principal competitor for supercomputer time, and a rich source 
of new ideas and new approaches to the computation of many 
fermion systems.”  Ken Wilson, 1990

x,t goes to x+ct, x-ct. P,E goes to P+E, P-E

Vacuum trivial

Orbital Basis Formulation

Makes QFT look like quantum chemistry

Good for quantum computation? Let’s see!

Rev. Mod. Phys., 21:392–399, Jul 1949.    Nuclear Physics B-Proceedings Supplements, 17:82–92, 1990.



Two requirements of fundamental theory:

1) Relativistic invariance

3) Hamiltonian formulation

1) implies coordinate systems related by Lorentz invariance
are equivalent.



2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a

Reproduced from: Quantum chromodynamics and other field theories on the light cone, Stanley J. Brodsky, Hans-Christian 
Pauli, Stephen S. Pinsky, Physics Reports, Volume 301, Issues 4–6, 1 August 1998, Pages 299-486



Lorentz transformations in the light-front

x
±
→ x

±

1± v /c
1∓ v /c

Lorentz transformations are diagonal in light-front

Lorentz transformations leave           invariant.x 2−c2t 2

Light front position: x− = x −ct

Light front time: x
+
= x +ct

x 2−c2t 2 = (x +ct)(x −ct)= x
+
x
−



Start with a simple model

1+1D – Total Energy E, Charge Q and momentum P are conserved. 

This means cutoff introduces error in Hamiltonian.

This implies a large cutoff required to make this error small enough.

PRC 28 1679 (1983, Z. Phys. C 23 263 (1984), PRD, 32:1993–2000, (1985), PRD, 32(8):2001–2013, (1985).
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In instant form quantization Fock space has particles of positive and 
negative momenta for given conserved total momenta.
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Fock space is partitioned into sectors of total LF momentum

Light-Front quantization in 1+1D

Think of an observer with x- =const. - moving at c to the left.

This observer sees all massive particles moving to the right.

All massive particles have positive light front momentum.



Start with a simple model in 1+1D

PRC 28 1679 (1983, Z. Phys. C 23 263 (1984), PRD, 32:1993–2000, (1985), PRD, 32(8):2001–2013, (1985).

L =
1

2
(@�)2 � 1

2
m2

B�
2 + i ̄�µ@µ �mF  ̄ � �� ̄ 

<latexit sha1_base64="Go2qB6rfz4qt+YgoIaLVJeuza3k="></latexit>

Free Boson Dirac Fermion Interaction

K =
X

n

n(a†nan + b†nbn + d†ndn)
<latexit sha1_base64="2T46b7NHxv32Qpgl63WcnTS+y5M="></latexit>

Harmonic Resolution K: dimensionless light-front momentum 

Q =
X

n

(b†nbn � d†ndn)
<latexit sha1_base64="38qmz8bHLn83W9SyU8Sz4hFISDo="></latexit>

Charge:

This plays the same role
as electron number in chemistry



Light-front quantization gives Fock space states:

F;F; !B = 1m1,2m2,...,ΛmΛ ; 1m1, 2m2,...,ΛmΛ ;!1 !m1,!2 !m2,...,Λ !mΛ

m
i
,m
i
∈ 0,1{ } 0≤ !m

i
<Λ / i +1

Light-Front Fock space in 1+1 D

Total Light-front momenta is partitioned amongst the particles 

Harmonic resolution K is a good quantum number instead of 
particle number.

Different values of K label blocks of the light-front Hamiltonian

P+ =
2⇡

L
K

<latexit sha1_base64="05WugVhbGLj6p49YnbrvKMAiwlM=">AAACLXicjVDLSgMxFM34rOOr6tJNsAiCUNoK6kYo6ELQRQX7gE4tmcydNjSTGZOMUIb5ITf+igguKuLW3zCdFnyg4IELh3PuIbnHjThTulQaWTOzc/MLi7kle3lldW09v7HZUGEsKdRpyEPZcokCzgTUNdMcWpEEErgcmu7gdOw370AqFoprPYygE5CeYD6jRBupmz9zXOgxkcBtnCmpI0IRBy5IGxvUbvbxCXY8XxKaVJyIpcllii9sB4T3menmC+ViKQP+mxTQFLVu/snxQhoHIDTlRKl2uRTpTkKkZpRDajuxgojQAelB21BBAlCdJLs2xbtG8bAfSjNC40z9mkhIoNQwcM1mQHRf/fTG4m9eO9b+cSdhIoo1CDp5yI851iEeV4c9JoFqPjSEUMnMXzHtE9OMNgXb/yuhUSmWD4qVq0qhejitI4e20Q7aQ2V0hKroHNVQHVF0jx7RCL1YD9az9Wq9TVZnrGlmC32D9f4BN+moEg==</latexit>

P
� =

L

2⇡
H

<latexit sha1_base64="6cGr/ube66aeGiNnTTVtHbRZ9mE=">AAACLXicjVDLSgMxFM34rONr1KWbYBHcWNoK6kYo6KILFxXsAzq1ZDJ32tBMZkwyQhnmh9z4KyK4qIhbf8P0AT5Q8MCFwzn3kNzjxZwpXSyOrLn5hcWl5dyKvbq2vrHpbG03VJRICnUa8Ui2PKKAMwF1zTSHViyBhB6Hpjc4H/vNO5CKReJaD2PohKQnWMAo0UbqOheuBz0mUrhNJkrmikgkoQfSxga1m0N8hl0/kISml1ladmOW4artgvA/M10nXyoUJ8B/kzyaodZ1nlw/okkIQlNOlGqXirHupERqRjlktpsoiAkdkB60DRUkBNVJJ9dmeN8oPg4iaUZoPFG/JlISKjUMPbMZEt1XP72x+JvXTnRw2kmZiBMNgk4fChKOdYTH1WGfSaCaDw0hVDLzV0z7xDSjTcH2/0polAulo0L5qpyvHM/qyKFdtIcOUAmdoAqqohqqI4ru0SMaoRfrwXq2Xq236eqcNcvsoG+w3j8ANvmoEQ==</latexit>

Light-front momentum and energy depend simply on L:

Momentum Energy



What is the meaning of Harmonic Resolution?
Compton wavelength of mass m particle: wavelength of 
photon with energy mc2 

K =
L
λ
C

Harmonic resolution is ratio of box size to Compton 
wavelength: K is a ``resolving power’’

λ
C
=
h
mc



Interacting theory has bound states of constituents whose 
properties emerge from the theory
 
Example: mesons - fermion-antifermion pairs with 
different momenta and numbers of binding bosons.

Structure of these particles is encoded in PDF

Pquark 

q
anti-
quark 

bosons

K=2

1

1

none

K=3

1

2

none

2

1

none

1

1

1



What do we want to compute?

x =
p+

P+
0  x  1

<latexit sha1_base64="aTYFlHbkv6N3J8gxql3aPME78Zc="></latexit>

What is the probability that a given constituent carries
a fraction of the light front momentum x? 

Q2 Q2



x =
p+

P+
0  x  1

<latexit sha1_base64="aTYFlHbkv6N3J8gxql3aPME78Zc="></latexit>

f(x) = f

✓
p+

P+

◆
= f

⇣ n

K

⌘
=

X

i

bm(n)
i

���h�(n)
i | Ki

���
2

.
<latexit sha1_base64="Ktcr56qEPUq7gVzvsVlE+Bd9yU4=">AAADGXicjVJNj9MwEHXC1xI+tgtHLhYRUldIpSkScEFaiQsSlyLR3ZXqNnKcSWs1doLtsFSu/wYX/goXDiDEEU78G9y0wC5aJEayNX5vZjzz7KwuuTb9/o8gvHDx0uUrO1eja9dv3Nzt7N061FWjGIxYVVbqOKMaSi5hZLgp4bhWQEVWwlG2eLbmj96A0rySr8yyhomgM8kLzqjxULoXPCASTlglBJU5tkRnii7AODweTPyxpHJWAo4TvMLxABPVnl10KonQTI+TiY+FwqzihCg+m5uViyKSwYxLC6+b9jJHZCUbkYGKsDdfO4PSgqnzwrVI0X273zpPi7ZYlxSKMltP7zs79Num8nkh0tkXZ2miG5FyTE54DnNqrHApn9qu3Hfrfn/PaUk9578YZ8lQ89SXcm7qh/V9572IgMz/zBClnTjp9VvD/3ZitLVh2vlG8oo1AqRhJdVeq35tJpYqw1krZaOhpmxBZzD2rqQC9MS2L+vwPY/kuKiUX9LgFj2dYanQeikyHymomeu/uTV4HjduTPFkYrmsGwOSbS4qmhKbCq+/Cc65AmbKpXcoU9z3itmceq2N/0z/KcLhoJc87A1eDuKDR1s5dtAddBd1UYIeowP0HA3RCLHgXfAh+BR8Dt+HH8Mv4ddNaBhsc26jMxZ+/wmeCfp5</latexit>

Parton Distribution Function
What is the probability that a given constituent carries
a fraction of the light front momentum x? 

Harmonic Resolution K gives a  PDF with K points:

All fock states with constituents carrying n quanta of 
harmonic resolution K.  This is the expectation value of a 
one-body operator in the front form.



Compact Mapping to Qubits in 1+1D

Requires        qubits in 1+1D !O K( )

F;F; !B = 1m1,2m2,...,ΛmΛ ; 1m1, 2m2,...,ΛmΛ ;!1 !m1,!2 !m2,...,Λ !mΛ

m
i
,m
i
∈ 0,1{ } 0≤ !m

i
<Λ / i +1

Only store occupied orbitals. Worst case state is:

11213141...I 1

Number of occupied orbitals I scales as K

K = l
l=1

I

∑ =
I(I +1)
2



Simulation cost in 1+1D

Quantum simulation algorithms now depend optimally on:
 
1. Sparsity -O(K2)
2. Norm (can use max norm - largest matrix element O(K))
3. Cost of locating and computing matrix elements - O(K).
4. Inverse error - logarithmic.

Overall cost of simulation for time t is 

D. W. Berry, A. M. Childs, and R. Kothari, “Hamiltonian simulation with nearly optimal dependence on all parameters”, 
in: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, IEEE, 2015, pp. 792–809.
D. W. Berry, A. M. Childs, Y. Su, X. Wang, and N. Wiebe, “Time-dependent Hamiltonian simulation with L1-norm 
scaling”, arXiv: 1906.07115, 2019.

!O tK 4( )
!O TK 4( )Adiabatic state preparation costs



Compact Mapping to Qubits in 3+1D

Transverse momenta mean multiple 
orbitals with same light front momenta, 
but distinct other quantum numbers.
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Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a

Qubit requirements scale as O K logΛ
⊥
+ logK( )( )

{K
i
,k
i
1,k
i
2} |1≤ i ≤ I{ }

Worst case state is when all occupied 
modes have light-front momentum 1

{1
i
,k
i
1,k
i
2} |1≤ i ≤K{ } = 1,k

1
1,k
1
2{ }, 1,k21,k22{ }.. 1,kK1 ,kK2{ }



In DLCQ, we shall use the collective label ⇠ containing the following degrees of freedom
for gluons and quarks, correspondingly:

⇠ = {n,~n?,�, a} (gluons) , (28a)

⇠ = {n,~n?,�, c, f} (quarks), (28b)

where a is the color index in the adjoint representation, c is the color index in the funda-
mental representation, f is the flavor index, and � is polarization or helicity. The discretized
light-front momentum n = 2⇡kz/L is analogous to that in 1 + 1D, while ~n? = (nx, ny) is the

dimensionless internal momentum ~k? = (kx, ky) = 2⇡~n?/L? introduced in order to separate
the center-of-mass motion of the composite state. For a Fock state |{⇠j, wj}i, the latter is
defined as:

~k? j = ~p? j � xj
~P? ,

X

j

wj
~k? j =

2⇡

L?

X

j

wj~n? j = 0 , (29)

where the sum goes over all the partons.
In 3+1D, one immediately benefits from using the front form formulation of non-Abelian

gauge theories because of the vacuum triviality and the absence of the ghost fields [67].
However, the presence of the transverse directions necessitates an additional momentum cut-
o↵ ⇤?. The Hamiltonian matrix remains sparse [110], allowing one to use the algorithms
discussed above.

Most importantly, in the DLCQ all the momentum modes, including those of massless
bosons, do necessarily carry a non-zero light-front momentum [67], i.e., n > 0 in eq. (28a).
Hence, although the qubit requirements for harmonic resolution K increase relative to the
1 + 1D case, they only increase to eO(K), since in the worst case the state may be composed
of K modes with light-front momentum one, all having distinct transverse momenta. Note
that using the compact encoding (in the sense of only storing the occupied modes) is crucial:
the number of unoccupied modes scales as the product of the momentum cuto↵s over all
dimensions.

In order to simulate the full QCD Lagrangian with harmonic resolution K and transverse
momentum cut-o↵ ⇤?, an upper bound on the number of required qubits to store the light-
front wavefunction for QCD in 3 + 1 dimensions is:

Q  2K
|{z}

number of
occupied

fermion/antifermion
modes

h
dlog2 Ke+ 2dlog2 ⇤?e| {z }

momentum

+ 1|{z}
helicity

+ dlog2 nfe| {z }
flavors

+ dlog2 nce| {z }
colors| {z }

fermion/antifermion mode quantum numbers

i

+ K
|{z}

number of
occupied

boson modes

h
dlog2 Ke+ 2dlog2 ⇤?e| {z }

momentum

+ dlog2 Ke| {z }
occupancy

+ 1|{z}
helicity

+ dlog2(n
2
c � 1)e| {z }

colors| {z }
boson mode quantum numbers

i
,

(30)
(see App. C for a more detailed analysis in the 1 + 1D case). The helicity is encoded by
a single qubit because the LF Dirac spinor has two ‘good’ (independent) components [136].
The number of flavors nf taken into consideration depends on the probing scale Q2.

18

Counting qubits for 3+1D QCD
Lattice approaches daunting: 
203 grid for 3+1 QCD: 
400000 qubits.

For 203 grid for 3+1 QCD Q=1360 qubits

This is smaller than 400000
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Quantum Simulation: Big Picture

Any quantum simulation algorithm that we develop can be
placed somewhere on this scale:

Resource requirements Fault-tolerant,
ab initio

NISQ
benchmarking Low High

We would like to be able to move continuously along this scale,
and to get most out of existing devices.

Scalability: even when benchmarking a small device, we
consider it as a first step on the way to quantum advantage.

Light-Front simulations on NISQ devices

Can we do some calculations on existing devices?

Basis Light Front Quantization: effective light-front Hamiltonian + 
second quantization + smart basis choice

Very efficient representations of QFT.

Example: light mesons.



BLFQ in 3 + 1D (arXiv:2009.07885.) 

1. Restrict to valence sector of meson Fock space
2. Work in terms of relative momentum: as for Hydrogen 
atom in basic QM.

3. Use an effective Hamiltonian (1811.08512) 
 
 

4. H0 can be solved analytically and its eigenstates provide 
an efficient basis representation for the problem

5. HNJL is the Nambu-Jona-Lasinio (two people!) interaction 
- an effective four fermion interaction.

H = H
0
+H

NJL,π
= H

transverse
+H

longitudinal
+H

NJL,π

S. Klimt, M. F. M. Lutz, U. Vogl, and W. Weise, Nucl. Phys. A516, 429 (1990). 


S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)


Shaoyang Jia and James P. Vary Phys. Rev. C 99, 035206 (2019)



BLFQ in 3 + 1D (arXiv:2009.07885.) 
Just as in chemistry we can specify the absolutely  
minimal model - analogous to STO3G H2.
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II. BLFQ in 3 + 1D (arXiv:2009.07885.)

For minimal values of cuto↵s, the LF Hamiltonian is

hij =

0

BBB@

640323 139872 �139872 �107450
139872 346707 174794 139872
�139872 174794 346707 �139872
�107450 139872 �139872 640323

1

CCCA
. (18)

This e↵ectively describes the spin-orbit interaction of quarks
whose momentum-space wave functions are in the
“s-orbital-state”.

Eigenvalues: {139.62; 722.22; 827.82; 864.72}.

The two lowest states of this 4⇥ 4 matrix correspond to the
(squared) masses of ⇡ and ⇢ mesons.

Eigenvalues {139.62,722.22,827.82,864.72} MeV2

Two lowest eigenvalues should be compared with masses of 
Pi+ and rho+ mesons {139.572, 775.262} MeV2

Simplest testbed problem.
S. Klimt, M. F. M. Lutz, U. Vogl, and W. Weise, Nucl. Phys. A516, 429 (1990). 


S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)


Shaoyang Jia and James P. Vary Phys. Rev. C 99, 035206 (2019)



BLFQ in 3 + 1D (arXiv:2009.07885.) 
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II. VQE + BLFQ (arXiv:2009.07885.)
Direct mapping, state:

| (~✓)i = ↵1|0001i+ ↵2|0010i+ ↵3|0100i+ ↵4|1000i . (21)

Multi-qubit Hamiltonian:

H = 87397(IXXI + IY Y I)� 53725(Y ZZY +XZZX)

� 320161(IIIZ + ZIII)� 173353(IZII + IIZI)

+ 69936(IIY Y + IIXX + Y ZY I +XZXI

� IY ZY � IXZX � Y Y II �XXII) + 987031IIII .

(22)

Ansatz circuit (the angles {✓1, ✓2, ✓3} are the VQE parameters):

Ry(✓2)

X X X

Ry(✓1) X

Ry(✓3)
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II. VQE + BLFQ (arXiv:2009.07885.)

Compact mapping, state:

| (~↵)i = ↵00|00i+ ↵01|01i+ ↵10|10i+ ↵11|11i . (23)

Multi-qubit Hamiltonian:

H = 33671XX + 141122Y Y + 146807ZZ

+ 493515II + 139872(ZX �XZ) .
(24)

Ansatz circuit (the amplitudes ~↵ are the VQE parameters):

U3(✓1,�1,�1) X U3(✓3,�3,�3)

U3(✓2,�2,�2)

Arbitrary state preparation:5 ~↵! {✓i,�i,�i}.

5 Shende et al., arXiv:quant-ph/0406176.

Direct Mapping Compact Mapping
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II. VQE + BLFQ (arXiv:2009.07885.)
VQE minimization on ibmq vigo, 8192 samples per term:IBM vigo, 8192 samples per term

Two qubits, five Pauli terms

Four qubits, sixteen Pauli terms

Here we optimize the ansatz by 
minimizing particle mass.

Given the optimized ansatz, we can 
compute other particle properties by 
estimating other observables.
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II. VQE + BLFQ (arXiv:2009.07885.)
Once we know how to prepare the ground state wavefunction,
we can evaluate other observables:

BLFQ in 3 + 1D (arXiv:2009.07885.) 



Figure 5: Precision vs. number of samples for ground state energy obtained via sampling
from the exact distribution. Fitting gives n ⇡ 382/✏2.04 (direct encoding) and n ⇡ 46/✏2.1 in
(compact encoding), confirming the theoretical n ⇠ O(1/✏2) dependence. Compact encoding
shows better convergence due to having shorter circuits on fewer qubits (compare Figs. 3 and
??). {fig:errors}

Next, we determined the number of samples from the exact distribution required to reach
the desired precision, which is expected to scale as O(1/✏2) [67]. To do so, we calculated the
relative error for determining the Hamiltonian’s expectation value in the true ground state
using the classical simulation (the corresponding parameters of the circuits were obtained
via the optimization at the previous stage). We performed 1000 experiments with a fixed
number of samples, and calculated the RMS relative errors in determining the ground state
expectation value over each set of experiments. The results on Fig. 5 indicate that on an
ideal quantum computer we would need to generate ⇠ 106 samples per Pauli term in order
to reach 2% precision, and ⇠ 4 · 106 samples to reach 1% precision.

Fig. 6 shows the relative errors for the energy, decay constant, and mass radius, evaluated
in the approximate ground state obtained via the VQE minimization procedure. The expres-
sions for all observables are obtained from the corresponding BLFQ matrices in analogy with
eqs. (41) and (42); the explicit expressions can be found in App. D. Note that all the observ-
ables have a dominant contribution from the unity term (IIII in the direct encoding and II
in the compact encoding), whose expectation value is exactly 1. Therefore, in Fig. 6 we also
show the expectation values for observables from which this term has been subtracted, which
in certain cases improves the relative precision of results. The expectation values without
the unit terms are the quantities actually measured on the quantum computer, while those
including the unit terms are the physically relevant numbers, so the relative errors in both
are of interest. In order to calculate the decay constant, one can use the circuit shown in
Fig. 2 or Pauli measurements; we use the latter option to minimize the number of gates.

The elastic form factors are shown in Fig. 7, and the corresponding charge radii are

22

Precision vs. number of samples for ground state energy obtained via sampling from the exact 
distribution. Fitting gives n ≈ 382/ε2.04 (direct encoding) and n ≈ 46/ε2.1 in (compact encoding), 
confirming the theoretical n ∼ O(1/ε2) dependence. (Natural logs).

Errors: mass



Figure 8: The results of the VQE minimization algorithm in the compact and direct encod-
ings. These were obtained from 8192 samples per term on ibmq vigo chip, with and without
measurement error mitigation. {fig:vqe_minimization}

Charge radius
q
hr2ci, ??

Encoding Direct Compact

Exact 6.31 · 10�3 6.31 · 10�3

Classical sampling 6.29 · 10�3 6.30 · 10�3

ibmq vigo 6.33 · 10�3 6.35 · 10�3

ibmq vigo (err. mit.) 6.34 · 10�3 6.31 · 10�3

Table 4: Pion charge radius, as defined in eq. (29), calculated using the numerical results
from Fig. 7.MK: SJ, could you please add the info about the units? [SJ: these results appear
to be in units of MeV�1] {tab:charge_radius}
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MeV-1

Errors: charge radius



Summary
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Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a
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Big picture

Flow of increasing complexity and computational resources (left
to right) for quantum simulation of quantum field theory in the
light-front formulation.

VQE [2, 3]z }| {
Two-body sector
BLFQ, relative
coordinate basis

!
Valence sector
BLFQ, single-
particle basis| {z }

Benchmarking

!
Multi-particle
BLFQ, single-
particle basis

!

Fault-tolerant [1]z }| {
Multi-particle
DLCQ single-
particle basis| {z }

Quantum-computational advantage

[1] Quantum Simulation of Quantum Field Theory in the
Light-Front Formulation, arXiv:2002.04016
[2] Light-Front Field Theory on Current Quantum Computers,
arXiv:2009.07885.
[3] Simulating High Energy Physics on NISQ devices using
Basis Light-Front Quantization (in preparation).
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