Quantum Simulation of quantum field theory in the light-front formulation

Peter Love ${ }^{1,3}$, Michael Kreshchuk ${ }^{1}$, Will Kirby ${ }^{1}$, Hugo Beauchemin¹, Gary Goldstein1, Shaoyang Jia², James Vary²

1 Department of Physics and Astronomy, Tufts University 2 Department of Physics, Iowa State University 3 Brookhaven National Laboratory

NISQ and beyond: quantum computing with and without quantum error correction

https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/

A Quantum Computer for Chemistry?

Simulated Quantum Computation of Molecular Energies, Alan Aspuru-Guzik, Anthony Dutoi, Peter J. Love, Martin Head-Gordon, Science, 309, 5741, (2005)

Simulating Fermions on a Quantum Computer

Simulated Quantum Computation of Molecular Energies, Alan Aspuru-Guzik, Anthony Dutoi, Peter J. Love, Martin Head-Gordon, Science, 309, 5741, (2005)

Two ways to simulate time evolution

Given a Hamiltonian: $\quad H=\sum_{k=1}^{m} H_{k}$
Two natural ideas of an "easy" Hamiltonian:

1) Terms are local (Direct Mappings)

Two-Local $H=\sum_{i, j} c_{i j} X_{i} \otimes X_{j}$
Three-Local $\quad H=\sum_{i, j} c_{i j k} X_{i} \otimes Y_{j} \otimes Z_{k}$

2) Terms are sparse (Compact Mappings)

NISQ applications - Variational Algorithms

Ansatz quantum

Peruzzo, et al Nature Communications, 5:4213, (2014), Farhi et al. arXiv:1411.4028 [quant-ph]

Variational Quantum Eigensolver - VQE

We want to find the smallest eigenvalue of:

$$
H=\sum_{P_{i} \in S} \alpha_{i} P_{i}
$$

Variationally minimize:

$$
\langle H\rangle=\sum_{P_{i} \in S} \alpha_{i}\left\langle P_{i}\right\rangle
$$

Classically separate minimization of each term fails rdms do not correspond to global state

Quantumly one can variationally minimize a global quantum state, evaluate terms separately

Nasty, brutish and short: VQE on NISQ devices

A variational eigenvalue solv, a quantum processor Peruzz al Nature communications 5 (4213), (2014)

Scalable Quantum Simulation of Molecular Energies,
O'Malley et al. Physical Revie.. X 6 (3), 031007, (2016)

From Quantum Chemistry to Quantum Field Theory

Fixed particle number

Use a grid as a regulator - discretize field values. Need ~thousands of qubits

Scattering cross sections

No sensible relativistic theory with fixed particle number

Basis representations requiring tens to hundreds of (logical) qubits

Static properties

Quantum Algorithms for Quantum Field Theories

Two approaches:

1) Discretize field config. and represent directly.
2) Quantum link models: discrete gauge variables, integrate out gauge fields, simulate complex spin model.

Daunting: 20^{3} grid for $3+1$ QCD: 400000 qubits.

Static observable in QCD - the parton distribution function

LHC collides protons - composite particles

Momentum distribution of constituents captured by the parton distribution function (PDF).

Uncertainty in PDF can dominate.

Parton physics on a quantum computer H. Lamm, S. Lawrence, Y. Yamauchii arXiv:1908.10439 (2019)
Deeply inelastic scattering structure functions on a hybrid quantum computer, N. Mueller, A. Tarasov, and R. Venugopalan Phys. Rev. D 102, 016007

Computing real time correlation functions on a hybrid classical/quantum computer N Mueller, A Tarasov, R Venugopalan

The Light Front formulation

"Ab initio quantum chemistry is an emerging computational area that is fifty years ahead of lattice gauge theory, a principal competitor for supercomputer time, and a rich source of new ideas and new approaches to the computation of many fermion systems." Ken Wilson, 1990
x, t goes to $x+c t, x-c t$. P,E goes to P+E, P-E

Vacuum trivial

Orbital Basis Formulation

Makes QFT look like quantum chemistry

Good for quantum computation? Let's see!

Forms of Relativistic Dynamics

P. A. M. Dirac
St. John's College, Cambridge, England

For the purposes of atomic theory it is necessary to combine the restricted principle of relativity with the Hamiltonian formulation of dynamics. This combination leads to the appearance of ten fundamental quantities for each dynamical system, namely the total energy, the total momentum and the 6 -vector which has three components equal to the total angular momentum. The usual form of dynamics expresses everything in terms of dynamical variables at one instant of time, which results in specially simple expressions for six or these ten, namely the components of momentum and of angular momentum. There are other forms for relativistic dynamics in which others of the ten are specially simple, corresponding to various sub-groups of the inhomogeneous Lorentz group. These forms are investigated and applied to a system of particles in interaction and to the electromagnetic field.

Two requirements of fundamental theory:

1) Relativistic invariance
2) Hamiltonian formulation
3) implies coordinate systems related by Lorentz invariance are equivalent.

Forms of Relativistic Dynamics

P. A. M. Dirac
St. John's College, Cambridge, England

Reproduced from: Quantum chromodynamics and other field theories on the light cone, Stanley J. Brodsky, Hans-Christian Pauli, Stephen S. Pinsky, Physics Reports, Volume 301, Issues 4-6, 1 August 1998, Pages 299-486

Lorentz transformations in the light-front

Lorentz transformations leave $x^{2}-c^{2} t^{2}$ invariant.
Light front position: $x_{-}=x-c t$
Light front time: $\quad x_{+}=x+c t$

$$
x^{2}-c^{2} t^{2}=(x+c t)(x-c t)=x_{+} x_{-}
$$

Lorentz transformations are diagonal in light-front

$$
x_{ \pm} \rightarrow x_{ \pm} \sqrt{\frac{1 \pm v / c}{1 \mp v / c}}
$$

Start with a simple model

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m_{B}^{2} \phi^{2}+i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m_{F} \bar{\psi} \psi-\lambda \phi \bar{\psi} \psi
$$

1+1D - Total Energy E, Charge Q and momentum P are conserved.

In instant form quantization Fock space has particles of positive and negative momenta for given conserved total momenta.

$$
\begin{aligned}
& |F ; \bar{F} ; \tilde{B}\rangle=\left|n_{1}^{m_{1}}, n_{2}^{m_{2}}, \ldots, n_{N}^{m_{N}} ; \bar{n}_{1}^{\bar{m}_{1}}, \bar{n}_{2}^{\bar{m}_{2}}, \ldots, \bar{n}_{N}^{\bar{m}_{N}} ; \tilde{n}_{1}^{\tilde{m}_{1}}, \tilde{n}_{2}^{\tilde{m}_{2}}, \ldots, \tilde{n}_{N}^{\tilde{m}_{A}}\right\rangle \\
& n_{j}, \bar{n}_{j}, \tilde{n}=0, \pm 1, \pm 2, \pm 3, \ldots, \pm \Lambda
\end{aligned}
$$

This means cutoff introduces error in Hamiltonian.

This implies a large cutoff required to make this error small enough.

Light-Front quantization in $1+1 \mathrm{D}$

Think of an observer with x - =const. - moving at c to the left.

This observer sees all massive particles moving to the right.

All massive particles have positive light front momentum.

Fock space is partitioned into sectors of total LF momentum

Start with a simple model in $1+1 \mathrm{D}$

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m_{B}^{2} \phi^{2}+i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m_{F} \bar{\psi} \psi-\lambda \phi \bar{\psi} \psi
$$

Harmonic Resolution K: dimensionless light-front momentum

$$
K=\sum_{n} n\left(a_{n}^{\dagger} a_{n}+b_{n}^{\dagger} b_{n}+d_{n}^{\dagger} d_{n}\right)
$$

Charge:

$$
Q=\sum_{n}\left(b_{n}^{\dagger} b_{n}-d_{n}^{\dagger} d_{n}\right)
$$

Light-Front Fock space in $1+1 \mathrm{D}$

Light-front quantization gives Fock space states:

$$
\begin{aligned}
|F ; \bar{F} ; \tilde{B}\rangle= & \left|1^{m_{1}}, 2^{m_{2}}, \ldots, \Lambda^{m_{\Lambda}} ; \overline{1}^{\bar{m}_{1}}, \overline{2}^{\bar{m}_{2}}, \ldots, \Lambda^{\bar{m}_{\Lambda}} ; \tilde{1}^{\tilde{m}_{1}}, \tilde{2}^{\tilde{m}_{2}}, \ldots, \Lambda^{\tilde{m}_{\Lambda}}\right\rangle \\
& m_{i}, \bar{m}_{i} \in\{0,1\} \quad 0 \leq \tilde{m}_{i}<\Lambda / i+1
\end{aligned}
$$

Total Light-front momenta is partitioned amongst the particles Light-front momentum and energy depend simply on L:

Momentum $\quad P^{+}=\frac{2 \pi}{L} K \quad P^{-}=\frac{L}{2 \pi} H \quad$ Energy
Different values of K label blocks of the light-front Hamiltonian

Harmonic resolution K is a good quantum number instead of particle number.

What is the meaning of Harmonic Resolution?
Compton wavelength of mass m particle: wavelength of photon with energy mc^{2}

$$
\lambda_{C}=\frac{h}{m c}
$$

Harmonic resolution is ratio of box size to Compton wavelength: K is a "resolving power"

$$
K=\frac{L}{\lambda_{C}}
$$

Interacting theory has bound states of constituents whose properties emerge from the theory

Example: mesons - fermion-antifermion pairs with different momenta and numbers of binding bosons.

Structure of these particles is encoded in PDF

What do we want to compute?

What is the probability that a given constituent carries a fraction of the light front momentum x ?

$$
x=\frac{p^{+}}{P^{+}} \quad 0 \leq x \leq 1
$$

Parton Distribution Function

What is the probability that a given constituent carries a fraction of the light front momentum x ?

$$
x=\frac{p^{+}}{P^{+}} \quad 0 \leq x \leq 1
$$

Harmonic Resolution K gives a PDF with K points:

$$
f(x)=f\left(\frac{p^{+}}{P^{+}}\right)=f\left(\frac{n}{K}\right)=\sum_{i} \widehat{m}_{i}^{(n)}\left|\left\langle\phi_{i}^{(n)} \mid \Psi_{K}\right\rangle\right|^{2}
$$

All fock states with constituents carrying n quanta of harmonic resolution K . This is the expectation value of a one-body operator in the front form.

Compact Mapping to Qubits in $1+1 \mathrm{D}$

$$
\begin{aligned}
|F ; \bar{F} ; \tilde{B}\rangle= & \left|1^{m_{1}}, 2^{m_{2}}, \ldots, \Lambda^{m_{\Lambda}} ; \overline{1}^{\bar{m}_{1}}, \overline{2}^{\bar{m}_{2}}, \ldots, \Lambda^{\bar{m}_{\Lambda}} ; \tilde{1}^{\tilde{m}_{1}}, \tilde{2}^{\tilde{m}_{2}}, \ldots, \Lambda^{\tilde{m}_{\Lambda}}\right\rangle \\
& m_{i}, \bar{m}_{i} \in\{0,1\} \quad 0 \leq \tilde{m}_{i}<\Lambda / i+1
\end{aligned}
$$

Only store occupied orbitals. Worst case state is:

$$
\left|1^{1} 2^{1} 3^{1} 4^{1} \ldots I^{1}\right\rangle \quad K=\sum_{l=1}^{I} l=\frac{I(I+1)}{2}
$$

Number of occupied orbitals I scales as \sqrt{K}
Requires $\tilde{O}(\sqrt{K})$ qubits in 1+1D

Simulation cost in $1+1 D$

Quantum simulation algorithms now depend optimally on:

1. Sparsity $-O\left(K^{2}\right)$
2. Norm (can use max norm - largest matrix element $O(K)$)
3. Cost of locating and computing matrix elements - $O(K)$.
4. Inverse error - logarithmic.

Overall cost of simulation for time \dagger is $\tilde{O}\left(t K^{4}\right)$
Adiabatic state preparation costs

$$
\tilde{O}\left(T K^{4}\right)
$$

D. W. Berry, A. M. Childs, and R. Kothari, "Hamiltonian simulation with nearly optimal dependence on all parameters", in: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, IEEE, 2015, pp. 792-809.
D. W. Berry, A. M. Childs, Y. Su, X. Wang, and N. Wiebe, "Time-dependent Hamiltonian simulation with L1-norm scaling", arXiv: 1906.07115, 2019.

Compact Mapping to Qubits in 3+1D

Transverse momenta mean multiple orbitals with same light front momenta, but distinct other quantum numbers.

$$
\left|\left\{\left\{K_{i}, k_{i}^{1}, k_{i}^{2}\right\} \mid 1 \leq i \leq I\right\}\right\rangle
$$

Worst case state is when all occupied modes have light-front momentum 1

$$
\left|\left\{\left\{1_{i}, k_{i}^{1}, k_{i}^{2}\right\} \mid 1 \leq i \leq K\right\}\right\rangle=\left|\left\{1, k_{1}^{1}, k_{1}^{2}\right\},\left\{1, k_{2}^{1}, k_{2}^{2}\right\} \cdot .\left\{1, k_{K}^{1}, k_{K}^{2}\right\}\right\rangle
$$

Qubit requirements scale as $O\left(K\left(\log \Lambda_{\perp}+\log K\right)\right)$

Counting qubits for 3+1D QCD

Lattice approaches daunting:

 20^{3} grid for $3+1$ QCD: 400000 qubits.

For 20^{3} grid for $3+1$ QCD Q=1360 qubits
This is smaller than 400000

Light-Front simulations on NISQ devices

$\underset{\text { benchmarking }}{\text { NISQ }} \underset{\text { Low }}{\longleftrightarrow}$ Resource requirements $\underset{\text { High }}{\longrightarrow}$| Fault-tolerant, |
| :---: |
| ab initio |

Can we do some calculations on existing devices?
Basis Light Front Quantization: effective light-front Hamiltonian + second quantization + smart basis choice

Very efficient representations of QFT.

Example: light mesons.

BLFQ in $3+1 D$ (arXiv:2009.07885.)

1. Restrict to valence sector of meson Fock space
2. Work in terms of relative momentum: as for Hydrogen atom in basic QM.
3. Use an effective Hamiltonian (1811.08512)

$$
H=H_{0}+H_{N J L, \pi}=H_{\text {transverse }}+H_{\text {longitudinal }}+H_{N J L, \pi}
$$

4. H_{0} can be solved analytically and its eigenstates provide an efficient basis representation for the problem
5. HNJL is the Nambu-Jona-Lasinio (two people!) interaction - an effective four fermion interaction.
```
S. Klimt, M. F. M. Lutz, U. Vogl, and W. Weise, Nucl. Phys. A516, 429 (1990).
S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)

\section*{BLFQ in \(3+1 D\) (arXiv:2009.07885.)}

Just as in chemistry we can specify the absolutely minimal model - analogous to STO3G H2.
\[
h_{i j}=\left(\begin{array}{cccc}
640323 & 139872 & -139872 & -107450 \\
139872 & 346707 & 174794 & 139872 \\
-139872 & 174794 & 346707 & -139872 \\
-107450 & 139872 & -139872 & 640323
\end{array}\right)
\]

Eigenvalues \(\left\{139.6^{2}, 722.2^{2}, 827.8^{2}, 864.7^{2}\right\} \mathrm{MeV}^{2}\)

Two lowest eigenvalues should be compared with masses of Pi+ and rho+ mesons \(\left\{139.57^{2}, 775.262\right\} \mathrm{MeV}^{2}\)

Simplest testbed problem.
S. Klimt, M. F. M. Lutz, U. Vogl, and W. Weise, Nucl. Phys. A516, 429 (1990).
S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)

Shaoyang Jia and James P. Vary Phys. Rev. C 99, 035206 (2019)

\section*{BLFQ in \(3+1 D\) (arXiv:2009.07885.)}

\section*{Direct Mapping}


Four qubits, sixteen Pauli terms

\section*{Compact Mapping}


Two qubits, five Pauli terms

IBM vigo, 8192 samples per term


Here we optimize the ansatz by minimizing particle mass.

Given the optimized ansatz, we can compute other particle properties by estimating other observables.

\section*{BLFQ in \(3+1 D\) (arXiv:2009.07885.)}


Compact encoding


\section*{Errors: mass}


Precision vs. number of samples for ground state energy obtained via sampling from the exact distribution. Fitting gives \(n \approx 382 / \varepsilon^{2.04}\) (direct encoding) and \(n \approx 46 / \varepsilon^{2.1}\) in (compact encoding), confirming the theoretical \(n \sim O\left(1 / \varepsilon^{2}\right)\) dependence. (Natural logs).

\section*{Errors: charge radius}
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|l|}{ Charge radius \(\sqrt{\left\langle r_{\mathrm{c}}^{2}\right\rangle}\)} \\
, \(\mathrm{MeV}^{-1}\) \\
\hline Encoding & Direct & Compact \\
\hline Exact & \(6.31 \cdot 10^{-3}\) & \(6.31 \cdot 10^{-3}\) \\
\hline Classical sampling & \(6.29 \cdot 10^{-3}\) & \(6.30 \cdot 10^{-3}\) \\
\hline ibmq_vigo & \(6.33 \cdot 10^{-3}\) & \(6.35 \cdot 10^{-3}\) \\
\hline ibmq_vigo (err. mit.) & \(6.34 \cdot 10^{-3}\) & \(6.31 \cdot 10^{-3}\) \\
\hline
\end{tabular}

\section*{Summary}

[1] Quantum Simulation of Quantum Field Theory in the
Light-Front Formulation, arXiv:2002.04016
[2] Light-Front Field Theory on Current Quantum Computers,
 arXiv:2009.07885.
[3] Simulating High Energy Physics on NISQ devices using Basis Light-Front Quantization (in preparation).

\section*{Join us at Tufts}

Graduate program: deadline Jan 15th
https://asegrad.tufts.edu/academics/explore-graduate-programs/physics

Postdocs: please email me at peter.love@tufts.edu

Faculty: Currently searching for CS Faculty in quantum information https://apply.interfolio.com/78094```

