

Tunneling into emergent topological matter

Jia-Xin Yin

Department of Physics Princeton University

Outline

- Emergent topological matter
- State-of-the-art STM technique
- Proof-of-principle methodology
- More to discover

Topological matter

Quantum topology

Topological quantum materials

Topological fermions (Dirac, Weyl...)

Steven M. Girvin and Kun Yang

Modern Condensed Matter **Physics**

Symmetry protected bulk-boundary correspondence

Quantized electronic excitations

J.E. Avron, et al. Phys. Today (2003) F.D.M. Haldane. RMP (2017) M.Z. Hasan, C.L. Kane. RMP (2010) X.L. Qi, S.C. Zhang. RMP (2011) B. Keimer, J.E Moore. Nat. Phys. (2017) N.P.Armitage, E.J. Mele, A. Vishwanath. RMP (2018).

K. He, Y. Wang, Q.K. Xue, ARCM (2018)

Emergent topological matter with strong interaction

Superconductivity

Magnetism

Topological order; mangy-body entanglement

Correlated electrons

P. W. Anderson. Science (1972)
E. Dagotto. Science (2005)
A. Fert. RMP (2008)
B. Keimer, S. Kivelson, M. Norman, M. Uchida, J. Zaanen. Nature (2015)

S. Sachdev. Rep. Prog. Phys. (2019) X.G. Wen. Science (2019)

B field as strong perturbation for emergent topological matter

Quantum magnetic flux *h*/e; quantum Hall conductance ne²/*h* (n is the Chern number)

Laughlin's quantum pump

Hofstadter butterfly

R.B. Laughlin. RMP (1999) **Chirality of electronic matter**

D. E. Kharzeev. Annu. Rev. Nucl. Part. Sci. (2015)

Outline

- Emergent topological matter
- State-of-the-art STM technique
- Proof-of-principle methodology
- More to discover

State-of-the-art STM technique

F. Hund, Z. Phys. (1927) J. R. Oppenheimer, Phys. Rev. (1928)L. Nordheim, Z. Phys. (1927). W. Schottky, Z. Phys. (1931)

Quantum tunneling principle

B. Voigtländer, Scanning Probe Microscopy. (Springer, 2015)

Pan-STM under a vector magnetic field

J. Tersoff, D.R. Hamann. PRB (1985)

STM data structure

Topography (Atomic resolution)

dI/dV spectrum (Sub-meV resolution)

dI/dV map Quasi-particle interference (QPI)

O. Fischer. Rev. Mod. Phys. (2007)
R. Wiesendanger. Rev. Mod. Phys. (2009)
J. E. Hoffman. Reports Prog. Phys. (2011)
A. R. Schmidt, J.C. Davis et al. New Journal of Physics (2011)
A. Gyenis, A. Yazdani et al. New Journal of Physics (2016)
H. Zheng, M. Z. Hasan. Advances in Physics X (2018)

Comparison with other techniques in probing topological matter

Technique	STM	ARPES	Magneto-transport
Key parameter	Local density of states	Spectral function	Conductivity tensor
Variables	Location; energy; magnetic field; magnetic or nonmagnetic tip; gating; temperature.	Momentum; energy; photon wavelength; photon polarization; spin polarization; gating; temperature.	Vector magnetic field; Landau level sequence; pressure; electrical field; gating; Temperature.
Unique aspects	Probing the scattering geometry; sub-meV energy resolution; Landau quantization; edge state; detecting zero modes.	Band crossing; spin/orbital- momentum locking and texture; probing both 2D surface and 3D bulk band structures.	Electron mobility; chiral anomaly; anomalous Hall; Hall quantization; thermal conductivity etc.
Connection with(in) scanning tunnelling microscopy	Correspondence between single defects, vortices and local density of states; correspondence between (bulk) energy gap and edge states.	Correspondence to momentum integrated photoemission signal; energy gaps; charge/spin/orbital texture; band dispersion; inter/intra- band structure scattering.	Effective quasi-particle dispersion and Fermi surface geometry; magnetic field response; effective mass, Fermi velocity, and Fermi length; phase transition.
Limitation	Momentum resolution; atomically flat surfaces; probing surface states and surface-projected bulk states; thermal smearing from tip.	Spatial resolution; fresh and flat surface; occupied states; energy resolution; magnetic field.	No energy, spatial, momentum or spin resolution; extrinsic scattering mechanism can contribute to the signal.

Proof-of-principle methodology

- Quasi-particle interference and Landau quantization
- Topological correspondence as a guideline for STM discovery
- Magnetic field control and engineering of topological matter
- Probing extreme local effect at the atomic scale

QPI method to probe scattering geometry

Early QPI method references: M. F. Crommie et al Nature, Science (1993). Y. Hasegawa et al PRL (1993). P. T. Sprunger. Science 275, 1764 (1997). L. Petersen et al. PRB (1998). J. E. Hoffman. et al. Science (2002).

P. Roushan, A. Yazdani et al. Nature (2009); D. Hsieh, M.Z. Hasan et al. Nature (2008)

Landau quantization to detect topological fermions

Early references: J.W.G. Wildöer et al. PRB (1997). R Dombrowski et al. Applied Physics A (1998) T. Matsuiet. et al. PRL (2005). G.H. Li. et al. Nat. Phys. (2007). D. L. Miller. et al. Science (2009).

 $E_n = \operatorname{sgn}(n) v \sqrt{2|n|e\hbar B}$

P. Cheng, Q.K. Xue et al. PRL (2010). Y. Okada, V. Madhavan et al. Science (2013). Transport Landau level quantization: Y. Xu, Y. P. Chen et al. Nature Phys (2014)

Proof-of-principle methodology

- Quasi-particle interference and Landau level quantization
- Topological correspondence as a guideline for STM discovery
- Magnetic field control and engineering of topological matter
- Probing extreme local effect at the atomic scale

Topological correspondence

Bulk-boundary correspondence

Chern number and edge states in the integer quantum Hall effect

Y. Hatsugai. PRL (1993)

Robust edge state in Bi

F. Yang, J.F. Jia et al. PRL (2012)

Wannier–Bloch correspondence

Maximally localized Wannier functions RMP (2012) N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, D. Vanderbilt

Topological quantum chemistry Nature (2017) Barry Bradlyn et al, C. Felser, M. I. Aroyo, B. A. Bernevig

Orbital magnetism in Co₃Sn₂S₂

J-X Yin, M Z Hasan et al. Nat Phys (2018)

Lattice geometry and topological correspondence

Unusual fermions arising from lattices with special geometry (honeycomb, kagome, Lieb, chiral lattice)

J.X. Yin, et al. Nature (2018). Z. Lin, et al. PRL (2018). Zhi Li, et al. Sci Adv (2018).

J. X. Yin, et al. Nat. Phys. (2019). N. Morali, et al. Science (2019). L. Jiao, et al. Phys. Rev. B (2019). S. Howard. Arxiv (2019).

J.X. Yin, et al. Nature (2020). S.S. Zhang, PRL (2020). J.X. Yin, et al. Nat. Commun. (2020).

J.X. Yin, et al. Nat. Commun. (2020). Y. Xing, et al. Arxiv (2020). Z. Guguchia. et al. Nat. Commun. (2020). Z. Liu. et al. Nat. Commun. (2020)

Quantum limit Chern magnetism in TbMn6Sn6

Theoretical concept for kagome Chern magnet:

F.D. Haldane PRL (1998).
C.L. Kane & E.J. Mele. PRL (2005).
G.Xu, B. Lian, S.C. Zhang. PRL (2015).

J.X. Yin, M.Z. Hasan et al. Nature (2020)

a Topological fermions in kagome lattice c Mn-kagome lattice ordering in RMn₆Sn₆

Bulk-boundary-Berry correspondence in Chern magnet

Additional features of Chern magnet

Proof-of-principle methodology

- Quasi-particle interference and Landau level quantization
- Topological correspondence as a guideline for STM discovery
- Magnetic field control and engineering of topological matter
- Probing extreme local effect at the atomic scale

Vector magnetic field STM

Early reference: H. F. Hess. et al. PRL (1992).

Princeton Work J.X. Yin, S.S. Zhang PRL (2019). S.S. Zhang, J.X. Yin PRB (2019). S.S. Zhang, J.X. Yin PRB (2020). LiFeAs (Tc=17K)

Giant spin-orbit tunability in topological magnet

Unknown unknown:

How would a topological magnet response to vector magnetization?

J X Yin, M Z Hasan et al Nature (2018) Y Li, J M Tranquada et al PRL (2019)

Vector field controlled scattering symmetry

QPI anisotropy~ $\cos^2 \theta$ θ is the in-plane angle with respect to the magnetization direction. By Lian Biao et al.

J X Yin, M Z Hasan et al Nature (2018)

Spin-orbit tunability through vector field magnetization

J X Yin, M Z Hasan et al Nature (2018)

Surface identification for Co₃Sn₂S₂

Crystalline symmetry and layer selective chemical marker

Early reference: A. Li, S.H. Pan et al. PRB (2019); P. Aynajian, A. Yazdani et al. Nature (2012)

J. X. Yin, M. Z. Hasan et al. Nat Phys (2019); J. X. Yin, M. Z. Hasan et al. Nat Commun (2020).

Kagome flat band in Co₃Sn₂S₂

J. X. Yin, M. Z. Hasan et al. Nat Phys (2019)

Negative flat band magnetism in Co3Sn2S2

Berry phase induced orbital magnetism: R. Karplus, J.M. Luttinger. PR (1954). D. Xiao, M.C. Chang, Q. Niu. RMP (2010). D. Vanderbilt. Cambridge (2018).

Proof-of-principle methodology

- Quasi-particle interference and Landau level quantization
- Topological correspondence as a guideline for STM discovery
- Magnetic field control and engineering of topological matter
- Probing extreme local effect at the atomic scale

Spin-orbit quantum impurity in topological magnet

A nonmagnetic impurity can introduce spin-orbit coupled magnetic resonance in topological magnets

Spin-orbit quantum impurity in In-Co₃Sn₂S₂

J. X. Yin, M. Z. Hasan et al Nat Commun (2020)

Spin-orbit quantum impurity in In-Co₃Sn₂S₂

A nonmagnetic impurity can introduce spin-orbit coupled magnetic resonance in topological magnets

J. X. Yin, M. Z. Hasan et al Nat Commun (2020)

Topological zero mode in artificial hybrid systems

Theory references: G. Moore, N. Read. Nucl. Phys. B (1991). G. E. Volovik. JETP Letters. (1999). A. Y. Kitaev. Phys.-Usp. (2001).

1D Chain

Ali Yazdani et al.

2D heterostructure

Jinfeng Jia et al.

Searching for naturally occurring topological zero mode

J X Yin, S H Pan, et al Nat. Phys. 2015

Majorana like robust zero mode

PHYSICAL REVIEW B 92, 115119 (2015)

Topological nature of the FeSe_{0.5} Te_{0.5} superconductor

Zhijun Wang,^{1,2} P. Zhang,¹ Gang Xu,^{1,3} L. K. Zeng,¹ H. Miao,¹ Xiaoyan Xu,¹ T. Qian,¹ Hongming Weng,^{1,4} P. Richard,¹ A. V. Fedorov,⁵ H. Ding,^{1,4,*} Xi Dai,^{1,4,†} and Zhong Fang^{1,4,‡}

PHYSICAL REVIEW B 93, 115129 (2016)

Topological characters in $Fe(Te_{1-x}Se_x)$ thin films

Xianxin Wu,¹ Shengshan Qin,¹ Yi Liang,¹ Heng Fan,^{1,2} and Jiangping Hu^{1,2,3,*}

PRL 117, 047001 (2016)	PHYSICAL	REVIEW	LETTERS	week ending 22 JULY 2016
------------------------	----------	--------	---------	-----------------------------

Topological Superconductivity on the Surface of Fe-Based Superconductors

Gang Xu, Biao Lian, Peizhe Tang, Xiao-Liang Qi, $\!\!\!^*$ and Shou-Cheng Zhang $\!\!^\dagger$

PHYSICAL REVIEW X 9, 011033 (2019)

Quantum Anomalous Vortex and Majorana Zero Mode in Iron-Based Superconductor Fe(Te,Se)

Kun Jiang,^{1,2} Xi Dai,³ and Ziqiang Wang¹ ¹Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA ²Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ³Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong

Spontaneous vortex formation and Majorana zero mode in iron based superconductor.

Recommended with a Commentary by Patrick A. Lee, MIT

Searching for naturally occurring topological zero mode

J.X. Yin, et al. Nat. Phys. (2015). S.S. Zhang, et al. PRB (2020). C. Chen, et al. Nat. Phys. (2020). Z. Wang, et al. Science (2020). T. Machida, et al. Nat. Mater. (2019). Q. Liu, et al. PRX (2018).

Fundamental role of anion in iron-based superconductivity

>100 cleaved $Ba_{0.4}K_{0.6}Fe_2As_2$ crystals (Tc=38K, experiments 2011~2015). 75% are disordered surfaces, 13% are Ba(K) surfaces, 11% are As surfaces, 1% are Fe surfaces (six samples). J.X. Yi

J.X. Yin, S. H. Pan et al. arXiv:2011.07701 (2020)

Atomic switch of superconducting electronic feature

Local pairing concept: P. W. Anderson Science (1987)

J.X. Yin, S. H. Pan et al. arXiv:2011.07701 (2020)

Local effects on pairing from geometry and interaction

Local pairing conceptCalculations by C.S. Ting, Z. Wang, J.P. Hu, B.M. Andersen...(2011~2020)P. W. Anderson Science (1987)Self-consistent Bogoliubov-de Gennes calculation

J.X. Yin, S. H. Pan et al. arXiv:2011.07701 (2020)

More to discover

- 18T vector field
- Ramping mode map
- Vector electric field

Vector field engineering of quantum materials RMn6Sn6, CeAlGe, Co2MnGa, UTe2,BISSCO,Fe1+x(Te,Se) Wannier–Bloch correspondence visualization Topological protection of quantum information

Measurement of "new" : how long it can be understood

Ong: What is your best suggestion to young researchers when they encounter a new phenomenon?

Anderson: Patience, and it can take a lifetime long.

P. W. Anderson (1923-2020)

Acknowledgement

Advisors: M. Zahid Hasan, Hong Ding, Shuheng Pan

STM collaborator: Songtian Zhang, Nana Shumiya, Yuxiao Jiang

Sample: Shuang Jia, Pengcheng Dai, Hechang Lei, Changqing Jin, Wenhong Wang, Genfu Chen, Satoru Nakatsuji, Brian C.Sales, Youguo Shi,

Theory: Ziqiang Wang, Titus Neupert, Hsin Lin, Guoqing Chang, Tay-Rong Chang, Biao Lian, Jiangping Hu, Ching-Sen Ting, Brian Møller Andersen, Rui Wang

