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Knowledge Grows Like a Tree

Mathematics and Sciences

Science-Based Engineering

Application-Based Engineering

Real World Applications and Technologies

6-60 billion transistors on a 
chip.

Simplicity Rules!
Verb.
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Important Milestones in Quantum Interpretation and 
Quantum Information
 Quantum measurements are random.
 Two prevailing schools of thoughts.
 Bell’s theorem and inequality: John Stewart Bell 

(1928 – 1990).

 Test of Bell’s theorem in 1982 by Alain Aspect.

Our Karma is not written on our forehead when we were born!
Our future is in our hands!
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A Quantum State is a Linear Superposition of States
--Quantum Weirdness

It is not real: only ghosts and angels can do that.
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More on Quantum Linear Superposition:

Proverbial Story of a Schrodinger Live Cat vs a Dead Cat!
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Google’s Quantum Computer:

Quantum linear superposition of 1016 quantum states!

Dead Cat Live Cat Neither Dead Nor Alive Cat

<   >=0•••
incoherent if averages to 0.

Quantum Coherence Made Simple:

Nature | Vol 574 | 24 OCTOBER 
2019
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Bloch Sphere---Spin State Spin is Unusual!
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Quantum State Equation
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Aggregate 
State 
Vector

Two Factory Case:
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N-Register Qubit:
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Quantum Fourier Transform: Power of Quantum Parallelism:

EM Signal EM Signal

…
n Qubits

Spin dynamics in NMREM Signal
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Quantum Fourier Transform, Contd:

n Unitary Operators

The above is an important component of Shor’s algorithm, with order finding 
and period finding.
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How can CEM help?

 Problem:  Present day quantum computers are very 
noisy! (not enough knowledge base)

 Spins are mimicked with two-level atoms: artificial or 
real.

 Many of the spin dynamics or two-level systems are 
done with EM fields.

 Better math-physics modeling with CEM can reduce 
errors and noise, and improve precision engineering.
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Quantum Maxwell’s Equations (Heisenberg Picture)
 Derived using energy conservation
 Quantized in coordinate space

 Quantum State Equation for a Quantum System:

ˆ ϕ χ=B
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Quantum Field is a Random Variable

{ }ˆ,| two-someq Ψ

(Courtesy of Kira and Koch)
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Mode Decomposition Approach

Sycamore 
quantum computer
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More on Mode Decomposition:
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A Quantum Beam Splitter Can Be Modeled
Using Mode Decomposition (Bloch-Floquet Modes)

Dr Dong-Yeop Na

HOM Effect



Quantum FDTD for Solving Quantum Maxwell’s Equations:

FDTD for the Field Operator

Define a relation between field operator and coordinate space operator
Via the Vector Potential Hopping Function (VPHF) G

FDTD for the scalar hopping function G

Dr Dong-Yeop Na
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Quantum FDTD:

Dr. Dong-Yeop Na
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Modeling of Dispersion in Quantized Field
--Coupling of Field to Lorentz Oscilators

Total energy of the system

Classical Hamiltonian with conjugate 
variables

Fields Lorentz Oscillator

Energy conservation argument

Classical Equations of Motion
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Quantum Case:

Energy conservation argument

Quantum Hamiltonian with conjugate 
variables

Quantum Equations of Motion



Chew, PQSEI Seminar Series, Purdue U, 2020

Dispersion Effect on Quantum Media

Dr. Dong-Yeop Na
Potentially can be used for quantum plasmonics

Dispersion Effect on Quantum Beam Splitter



joint 
measurem

ent

noisy/loss
y channel noisy/loss

y channel
low 

reflectivity

low 
reflectivity

Radar : Target detection (Yes/No), Target Ranging (Distance), Target Imaging

Classical Radar

Quantum Radar (Quantum illumination)

Higher sensitivity upon background noisy 
channel1. Entangled photon pairs (signal/idler)

2. Joint measurement (strong 
correlation)

Early alarming

Quantum Sensing



idler
signal

Frequency (energy)-time Entangled Photon Pairs*

has the higher dimensional 
entanglement than

Entanglement dimension = 𝑑𝑑

𝑑𝑑 = 7

Schmidt coefficients

* J. A. Jaramillo-Villegas et al. (PI: A. M. Weiner), “Persistent energy-time entanglement covering multiple resonances of an on-chip biphoton 
frequency comb,” Optica, vol. 4, pp. 655-658, 2017.

# of modes = 𝑑𝑑

Possible collaboration with A. Weiner’s group.



Performance Comparison
Unentangled single photon Entangled photons

Good regime
𝜂𝜂
�𝑛𝑛

> 1 𝜂𝜂𝑑𝑑
�𝑛𝑛

> 1

# of trial to detect 
the presence of a target 𝒪𝒪(1/𝜂𝜂) 𝒪𝒪(1/𝜂𝜂)

Bad regime
𝜂𝜂
�𝑛𝑛 > 1 𝜂𝜂𝑑𝑑

�𝑛𝑛 < 1

# of trial to detect 
the presence of a target 𝒪𝒪(8�𝑛𝑛/𝜂𝜂2) 𝒪𝒪(8�𝑛𝑛/𝜂𝜂2𝑑𝑑)
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Time-Frequency Entanglement Modeling

Dr. Dong-Yeop Na
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Correlation Tomogram (Using Synthetic Data)

Dr. Dong-Yeop Na
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Quantum Ghost Imaging Experiment (Synthetic)

Dr. Dong-Yeop Nasingle-pixel 
detector multi-pixel 

detector

object 
(dielectric)

initialization of
entangled

photons

measure correlation: 𝑔𝑔 2 𝑠𝑠

scanning
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 Single photon sources (SPSs) are important devices in various quantum 
information systems

 Current modeling methods do not incorporate photon propagation effects into 
estimations of photon coherence

 Will analyze a circuit QED SPS that uses a transmon qubit as a quantum 
emitter

Full-Wave Modeling of a Single Photon Source

M. Devoret et al., DOI: 10.1038/nature06126 J. S. Tsai et al., DOI: 10.1103/PhysRevApplied.13.034007 

Dr. Thomas E Roth
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1.   Quantization of the Electromagnetic Field

Modeling Process Development

2.   Formulate Coupled Field-Transmon System
Simulation Domain 

(explicitly 
modeled)

Port Regions 
(analytically 

accounted for)

Port Regions 
(analytically 

accounted for)

Modified from M. Devoret et al., DOI: 10.1038/nature06126 

3.   Derive Coupled Equations of Motion

Interaction Hamiltonian

Transmon Current Operator

M. Devoret et al., DOI: 10.1007/s11128-009-0100-6 

Dr. Thomas E Roth
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2.    Transmon Operator Time Evolution with Lindblad Master Equation

Solution Procedure

1.    Weak Coupling Approximation – Linearizes System

3.    Dyadic Green’s Function Photon Propagation Model

F. Nori et al., DOI: 10.1016/j.cpc.2012.02.021 J. S. Tsai et al., DOI: 10.1103/PhysRevApplied.13.034007 

Strong Coupling Weak Coupling

Dr. Thomas E Roth
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Single Photon Source Geometry

Dimensions in m
Dimensions in 𝝁𝝁m

Dimensions in 𝝁𝝁m

Microwave single photon source is an excellent example of a multiscale structure typically encountered in circuit QED systems

CPW cavity 
resonant at 5.115 

GHz

Input Coupling 
Capacitor

Output Coupling 
Capacitor

Dr. Thomas E Roth
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Actual Mesh Used!

Dr. Thomas E Roth
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 Decay rates must be included in 
Lindblad master equation to correctly model system
 Dephasing rate very difficult to calculate – used state 

of the art experimental parameters in modeling
 Current state of the art is ~30 kHz

 Spontaneous emission rate can be computed using 
potential-based TDIEs
 Note: field-based method was unstable for this 

system

Decay Rates

Spontaneous Emission Rate Computation

Computed with potential-based TDIE

Modeled SER is 
similar to the 

rates measured 
for a similar 

single photon 
source

Dr. Thomas E Roth
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Photon Propagation Results

Transmon coupling scheme used in this single photon source leads to significant excitation of slotline modes as opposed to CPW modes

Approximately Bandlimited Impulse Impulse Response to Output Resistors

Dr. Thomas E Roth
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Casimir Force Calculation:

Wave-Particle Duality
Courtesy of Wiki

Classical harmonic oscillator
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Finding resonant frequencies of complex systems
 Resonant frequencies of complex circuits.

KCL, KVL

 Resonant frequencies of complex structures.
 Integral equation of scattering (EFIE)

Matrix representation

 Host of CEM methods available.
A very complex geometry
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Argument Principle

 The above sum is divergent! Renormalize below.

 Renormalized sum can be evaluated using argument 
principle.

where Z is a method of moments matrix. Lots of math-physics, CEM training!

Phil ATKINS 

Wei SHA
Qi DAIJie XIONG
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Repulsive Casimir Force:

Tian XIA



Chew, PQSEI Seminar Series, Purdue U, 2020

More Repulsive Casimir Force:

Tian XIA
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Questions to 
ask.

 Should future quantum computers work 
with optical photons or microwave 
photons?

 First attempt at optical computers failed in 
1980’s because of large optical 
components.

 Why’re microwave components much 
smaller than optical components?

 Is the difference in mode confinement?

Typical 
optical table:

Typical 
microwave 
components: / 4λ

Possible Collaboration with
Shalaev and Boltasseva’s
Group on 
quantum plasmonics.
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Conclusions
 Give an introduction on quantum parallelism and its power.
 Use the quantum Fourier transform as an illustration.
 Quantum computer has high payoffs but engineering a 

quantum coherent system is difficult.
 Recently, we have developed CEM methods to solve 

quantum Maxwell’s equations. (Mode decomposition and 
quantum FDTD) (Dong-Yeop NA).

 Transmon modeling in circuit QED and Time Domain Integral 
Equations (TDIE) (Thomas E Roth).

 Report on recent progress on using CEM for Casimir force.
 Better math and full physics modeling through CEM can help 

improve the design of quantum computers.  Math logic and 
computer codes don’t lie.

 It is important to find the simplest approach to explain 
things, in order for knowledge transfer between disciplines 
and the development of advanced technologies.

7 billion transistors on a chip.
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Thank you!

 Thanks to colleagues at Purdue for interesting 
discussions and support!



Diversity and InclusionNeil Armstrong



Dong-Yeop NA

Hui GAN Shu CHEN

Jie ZHU

Carlos SALAZAR

Thomas E ROTHChris J. RYU

Tian XIA Mert HIDAYETOGLU

Members of the Group and Collaborators

Lingling MENG

Boyuan ZHANG

Phil ATKINS 

Wei SHA Aiyin LIU
Qi DAI Dan JIAO

Erhan KUDEKI Wen-Mei HWU Peter BERMEL Lijun JIANG

Jie XIONG Qin LIUXiaoyan XIONG Ivan OKHMATOVSKIILuis GOMEZ
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Recent Papers Related to Quantum Technologies
 D.-Y. Na and W. C. Chew, “Classical and Quantum Electromagnetic Interferences: What Is The 

Difference?” PIER Journal, Vol. 168, 1-13, 2020.
 T. Xia, P. Atkins, W.E.I. Sha, and W. C. Chew “Casimir Force: Vacuum Fluctuation, Zero-Point Energy, 

and Computational Electromagnetics,” IEEE Antennas and Propagation Magazine, in press.
 W. C. Chew, D.-Y. Na, T. E. Roth, C. J. Ryu, and E. Kudeki, “Quantum Maxwell's Equations Made 

Simple,” IEEE Antennas and Propagation Magazine, scheduled for Feb. 2020.
 W. C. Chew, A. Y. Liu, C. Salazar-Lazaro, D.-Y. Na, and W.E.I. Sha, “Hamilton Equations,

Commutator, and Energy Conservation,” Quantum Reports, vol. 1, pp. 295-303, 2019.
 D.-Y. Na and W. C. Chew, “Quantum Electromagnetic Finite-Difference Time Domain Solver,”

Quantum Reports, vol. 2, pp. 253-265, 2020.
 D.-Y. Na, J. Zhu, W. C. Chew, and F. L. Teixeira. "Quantum information preserving computational

electromagnetics." Physical Review A 102, no. 1 (2020): 013711.
 W. C. Chew, A.Y. Liu, C. Salazar-Lazaro, W.E.I. Sha,  "Quantum electromagnetics: A new look—Parts 

I & II." IEEE Journal on Multiscale and Multiphysics Computational Techniques 1 (2016): 85-97.
 W. E. I. Sha, A. Y. Liu, and W. C. Chew, Dissipative quantum electromagnetics, J. Multiscale and 

Multiphys. Comput. Techn. 3, 198 (2018).
 P.R. Atkins, W.C. Chew, M.K. Li, L.E. Sun, Z.H. Ma, and L.J. Jiang. "Casimir force for complex 

objects using domain decomposition techniques." Progress In Electromagnetics Research 149 (2014): 
275-280.

 P. R. Atkins, Q. I. Dai, W.E.I. Sha, and W. C. Chew, "Casimir Force for Arbitrary Objects Using the 
Argument Principle and Boundary Element Methods," Progress In Electromagnetics Research, vol. 
142, pp. 615-624, Sep. 2013. 

 W. C. Chew, “Quantum mechanics made simple: Lecture notes UIUC,” 
http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf, 2016.
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